## Lipschitz Analysis of Noisy Quantum Inference as Phase Retrieval

Chris Dock

Advisor: Radu Balan
University of Maryland
cdock@umd.edu
September 30, 2021

## Overview

(1) General Problem of Lipschitz Inversion
(2) Examples
(3) Quantum Tomography and $S^{r, 0}$

4 Stability Analysis
(5) Known results
(6) Geometric considerations
(7) New results

## Lipschitz Inversion

Given: A nonlinear map $\beta: \mathcal{S} \rightarrow \mathbb{R}^{m}$ from a metric space $(\mathcal{S}, D)$ to Euclidean space $\left(\mathbb{R}^{m}, d\right)$. We also assume $\mathcal{S} \subset H$ where $H$ is a Hilbert space.
Would like: A left inverse $\omega: \mathbb{R}^{m} \rightarrow \mathcal{S}$ that is globally Lipschitz.


## Approach

(1) Obtain an L-Lipschitz inverse $\beta^{-1}: \beta(\mathcal{S}) \rightarrow \mathcal{S} \subset H$
(2) Use Kirszbraun's Theorem to obtain an L-Lipschitz extension $\hat{\omega}: \mathbb{R}^{m} \rightarrow H$. See recent constructible proofs of Kirszbraun [AGM18].
(0) If $\mathcal{S}$ is a Lipschitz retract, form $\omega: \mathbb{R}^{m} \rightarrow \mathcal{S}, \omega=\Pi \circ \hat{\omega}$ where $\Pi: H \rightarrow \mathcal{S}$ is the Lipschitz retraction.


## Spaces

In this talk we will take $H=\operatorname{Sym}\left(\mathbb{C}^{n}\right) \subset \mathbb{C}^{n \times n}$ to be our ambient Hilbert space, endowed with real inner product $\langle A, B\rangle_{\mathbb{R}}:=\Re \operatorname{Tr}\left[A^{*} B\right]$. Options for $\mathcal{S}$ include
(1) Convex cone of PSD

$$
\operatorname{Sym}_{\mathbb{C}}^{+}:=\left\{S \in \operatorname{Sym}\left(\mathbb{C}^{n}\right) \mid S \geq 0\right\}
$$

(2) Low rank quantum states

$$
\mathcal{M}_{r}:=\left\{S \in \operatorname{Sym}_{\mathbb{C}}^{+} \mid \operatorname{rank}(S) \leq r, \operatorname{Tr}[S]=1\right\}
$$

(0) Pure quantum states $\mathcal{M}_{1}$
(- Cone of low-rank mixed signature signals

$$
\begin{array}{r}
S^{p, q}:=\left\{S \in \operatorname{Sym}\left(\mathbb{C}^{n}\right) \mid S \text { has at most } p\right. \text { positive eigenvalues } \\
\text { and } q \text { negative eigenvalues }\}
\end{array}
$$

## $S^{p, q}$

We denote by $S^{p, q}$ the subset of $S^{p, q}$ having exactly $p$ positive and $q$ negative eigenvalues. One can show

## Theorem

For every pair of non-negative integers $p$ and $q$

- $S^{p, q}$ is a closed semi-algebraic set.
- $S^{p, q}=S^{p, 0}+S^{0, q}=S^{p, 0}-S^{q, 0}$.
- $S^{p, q} \simeq \mathbb{C}^{n, p+q} / U(p, q)$ where the quotient is by the $p+q \times p+q$ possibly indefinite unitary matrices acting on the right.
- $S^{p, q}=\left\{x x^{*}-y y^{*} \mid x \in \mathbb{C}^{n, p} \quad y \in \mathbb{C}^{n, q}\right\}$
- $S^{p, q}=\cup_{0 \leq s \leq p} \cup_{0 \leq t \leq q} S^{s, t}$.
- $S^{p, q}$ is a smooth manifold of dimension $2 n(p+q)-(p+q)^{2}$.
- $S^{r, 0} \simeq \mathbb{C}_{*}^{n, r} / U(r)$ where $\mathbb{C}_{*}^{n, r}$ denotes the full rank tall matrices.
- $S^{r, r} \simeq T \mathcal{S}^{r, 0}$ where $T \dot{S}^{r, 0}$ is the tangent bundle.


## Semi Metric Structure on $\mathbb{C}^{n, r}$ induced by $S^{r, 0}$

The identification $S^{r, 0} \simeq \mathbb{C}^{n, r} / U(r)$ can be made explicit via the quotient map

$$
\begin{array}{r}
\pi: \mathbb{C}^{n, r} \rightarrow S^{r, 0} \\
\pi(z)=z z^{*}
\end{array}
$$

Given that, we find two non-equivalent classes of semi metrics on $\mathbb{C}^{n, r}$ $d_{p}, D_{p}: \mathbb{C}^{n, r} \times \mathbb{C}^{n, r} \rightarrow \mathbb{R}$.
The norm induced metrics:

$$
d_{p}(x, y)=\|\pi(x)-\pi(y)\|_{p}=\left\|x x^{*}-y y^{*}\right\|_{p}
$$

And the natural metrics:

$$
D_{p}(x, y)=\min _{\substack{x \in[x] \\ y \in[y]}}\|x-y\|_{p}=\min _{U \in U(r)}\|x-y U\|_{p}
$$

We have the following identity:

$$
D_{2}(x, y)=\sqrt{\operatorname{Tr}(\pi(x))+\operatorname{Tr}(\pi(y))-2\|\sqrt{\pi(x)} \sqrt{\pi(y)}\|_{1}}
$$

Remark: it is a consequence of the Arithmetic-Geometric Mean Inequality that: [BK00]

$$
\frac{1}{2}\|\sqrt{\pi(x)}-\sqrt{\pi(y)}\|_{2}^{2} \leq \min _{\substack{x \in[x] \\ y \in[y]}}\|x-y\|_{2}^{2} \leq\|\sqrt{\pi(x)}-\sqrt{\pi(y)}\|_{2}^{2}
$$

That is $D_{2}$ is comparable to the Bures-Hellinger distance.

## Quantum Tomography

It is common in physics to model a system as a statistical ensemble over pure quantum states $\psi_{1}, \ldots, \psi_{r} \subset \mathcal{H}$ having ensemble probabilities $p_{i}$ of being in state $\psi_{i}$. In the finite dimensional case, we may take $\mathcal{H}=\mathbb{C}^{n}$. In this case, the density matrix

$$
\rho:=\sum_{j=1}^{r} p_{r} \psi_{j} \psi_{j}^{*}
$$

contains all of the knowable information about the system. For instance, the expectation of a given observable $A \in \operatorname{Sym}\left(\mathbb{C}^{n}\right)$ is $\operatorname{Tr}[\rho A]$. Note that the collection of all such density matrices is precisely $\mathcal{M}_{r}$. The problem of quantum tomography is to infer $\rho$ from noisy measurements of the form

$$
\left[\begin{array}{c}
\operatorname{Tr}\left[\rho F_{1}\right] \\
\vdots \\
\operatorname{Tr}\left[\rho F_{m}\right]
\end{array}\right]+\nu \stackrel{\omega}{\mapsto} \hat{\rho} \quad \nu \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

In such a way that $\|\rho-\hat{\rho}\|_{H} \leq C\|\nu\|_{2}$

## $\alpha$ and $\beta$ maps

It suffices to consider our observables $\left\{F_{k}\right\}_{k=1}^{m}$ to lie in $\operatorname{Sym}\left(\mathbb{C}^{n}\right)^{+}$; if not we may simply define $\tilde{F}_{k}=F_{k}+\mu \mathbb{I}$ so that $\operatorname{Tr}\left[\rho F_{k}\right]=\operatorname{Tr}\left[\rho \tilde{F}_{k}\right]-\mu$ with $\mu \in \mathbb{R}$ large enough that all of the $\tilde{F}_{k}$ are positive. In this case there exists $z \in \mathbb{C}^{n, r}$ and $f_{k} \in \mathbb{C}^{n, r}$ so that that $\rho=\pi(z)$ and $\tilde{F}_{k}=\pi\left(f_{k}\right)$, so that the problem of noisy quantum inference is equivalent to whether the following map is Lipschitz invertible:

$$
\begin{aligned}
& \beta: \mathbb{C}^{n \times r} / U(r) \rightarrow \mathbb{R}^{m} \\
& \left.\beta_{k}(z):=\left\langle\pi(z), \pi\left(f_{k}\right)\right\rangle_{\mathbb{R}} \quad \text { (equal to }\left|\left\langle z, f_{k}\right\rangle \mathbb{C}\right|^{2} \text { when } r=1\right)
\end{aligned}
$$

In analogy with the classical phase retrieval problem we also define

$$
\begin{aligned}
& \alpha: \mathbb{C}^{n \times r} / U(r) \rightarrow \mathbb{R}^{m} \\
& \left.\alpha_{k}(z):=\left\langle\pi(z), \pi\left(f_{k}\right)\right\rangle_{\mathbb{R}}^{\frac{1}{2}} \quad \text { (equal to }\left|\left\langle z, f_{k}\right\rangle_{\mathbb{C}}\right| \text { when } r=1\right)
\end{aligned}
$$

Note that we are relaxing our requirement that the estimate $\hat{\rho}=\omega(x)$ have unit trace. We do this because $\mathcal{M}_{r}$ is not contractible when $r<n$, and so no Lipschitz retract $\Pi: \operatorname{Sym}\left(\mathbb{C}^{n}\right) \rightarrow \mathcal{M}_{r}$ is possible.

## $\alpha$ and $\beta$ maps (stability)

The set of observables $\mathcal{F}:=\left\{F_{k}\right\}_{k=1}^{m}=\left\{\pi\left(f_{k}\right)\right\}_{k=1}^{m}$ is called phase retrievable if the analysis maps $\alpha$ and $\beta$ are injective. By scaling, it is natural to analyze the Lipschitz constants of

$$
\begin{aligned}
\alpha:\left(\mathbb{C}^{n \times r} / U(r), D_{p}\right) & \rightarrow\left(\mathbb{R}^{m},\|\cdot\|_{2}\right) \\
\beta:\left(\mathbb{C}^{n \times r} / U(r), d_{p}\right) & \rightarrow\left(\mathbb{R}^{m},\|\cdot\|_{2}\right)
\end{aligned}
$$

What we would like to show is the following:

## Theorem

Assume $\mathcal{F}=\left\{F_{1}, \ldots, F_{k}\right\} \subset$ Sym $_{\mathbb{C}}^{+}$is phase retrievable. Then there are constants $a_{0}, A_{0}, b_{0}, B_{0}>0$ so that for every $x, y \in \mathbb{C}^{n \times r} / U(r)$

$$
\begin{aligned}
A_{0} D_{2}(x, y)^{2} & \leq \sum_{k=1}^{m}\left|\left\langle\pi(x), \pi\left(f_{k}\right)\right\rangle_{\mathbb{R}}^{1 / 2}-\left\langle\pi(y), \pi\left(f_{k}\right)\right\rangle_{\mathbb{R}}^{1 / 2}\right|^{2} \leq B_{0} D_{2}(x, y)^{2} \\
a_{0} d_{1}(x, y)^{2} & \leq \sum_{k=1}^{m}\left|\left\langle\pi(x), \pi\left(f_{k}\right)\right\rangle_{\mathbb{R}}-\left\langle\pi(y), \pi\left(f_{k}\right)\right\rangle_{\mathbb{R}}\right|^{2} \leq b_{0} d_{1}(x, y)^{2}
\end{aligned}
$$

Remark: The nuclear norm is the easiest to manipulate in this context, but of course $d_{1}$ and $d_{2}$ are comparable.

## Local Lipschitz Constants

In order to make the problem more tractable we analyze the local Lipschitz properties of $\alpha$ and $\beta$ :

$$
\begin{aligned}
& A(z)=\lim _{R \rightarrow 0} \inf _{\substack{D_{2}(x, z)<R \\
D_{2}(y, z)<R \\
\pi(x) \neq \pi(y)}} \frac{\sum_{k=1}^{m}\left|\left\langle\pi(x), \pi\left(f_{k}\right)\right\rangle_{\mathbb{R}}^{1 / 2}-\left\langle\pi(y), \pi\left(f_{k}\right)\right\rangle_{\mathbb{R}}^{1 / 2}\right|^{2}}{D_{2}(x, y)^{2}} \\
& B(z)=\lim _{\substack{\text { a } \\
R \rightarrow 0}} \sup _{\substack{D_{2}(x, z)<R \\
D_{2}(y, z)<R \\
\pi(x) \neq \pi(y)}} \frac{\sum_{k=1}^{m}\left|\left\langle\pi(x), \pi\left(f_{k}\right)\right\rangle_{\mathbb{R}}^{1 / 2}-\left\langle\pi(y), \pi\left(f_{k}\right)\right\rangle_{\mathbb{R}}^{1 / 2}\right|^{2}}{D_{2}(x, y)^{2}}
\end{aligned}
$$

$$
a(z)=\lim _{R \rightarrow 0} \inf _{\substack{d_{1}(x, z)<R \\ d_{1}(y, z)<R}} \frac{\sum_{k=1}^{m}\left|\left\langle\pi(x), \pi\left(f_{k}\right)\right\rangle_{\mathbb{R}}-\left\langle\pi(y), \pi\left(f_{k}\right)\right\rangle_{\mathbb{R}}\right|^{2}}{d_{1}(x, y)^{2}}
$$

$$
d_{1}(y, z)<R
$$

$$
\pi(x) \neq \pi(y)
$$

$$
b(z)=\lim _{R \rightarrow 0} \sup _{\substack{d_{1}(x, z)<R \\ d_{1}(y, z)<R \\ \pi(x) \neq \pi(y)}} \frac{\sum_{k=1}^{m}\left|\left\langle\pi(x), \pi\left(f_{k}\right)\right\rangle_{\mathbb{R}}-\left\langle\pi(y), \pi\left(f_{k}\right)\right\rangle_{\mathbb{R}}\right|^{2}}{d_{1}(x, y)^{2}}
$$

## Realification

Because $D \pi(z): \mathbb{C}^{n, r} \rightarrow T_{\pi(z)}\left(\stackrel{( }{S}^{r, 0}\right), D \pi(z)(w)=z w^{*}+w z^{*}$ is real linear but not complex linear, it is natural to view the local Lipschitz problem in terms of the realifications of the objects involved. Define the linear isomorphism $I: \mathbb{C}^{n, r} \rightarrow \mathbb{R}^{2 n, r}$ with $I(A)=\left[\begin{array}{c}\Re A \\ \Im A\end{array}\right]$ and the algebra homomorphism $j: \mathbb{C}^{n, r} \rightarrow \mathbb{R}^{2 n, 2 r}$ with $j(A)=\left[\begin{array}{cc}\Re A & -\Im A \\ \Im A & \Re A\end{array}\right]$. Note that

$$
j(A)=\left[\begin{array}{ll}
l(A) & J l(A)
\end{array}\right] \quad, J=\left[\begin{array}{cc}
0 & -\mathbb{I}_{n \times n} \\
\mathbb{I}_{n \times n} & 0
\end{array}\right]
$$

We have, for example in the case $r=1$ :

$$
\operatorname{span}_{\mathbb{R}}\{i z\}=\operatorname{Ker}(D \pi(z)) \simeq \operatorname{Ker}(D j \circ \pi(l(z)))=\operatorname{span}(J l(z))
$$

## Sketch of argument



- For $z \in \mathbb{C}_{*}^{n, r}$ formulate $a(z)$ and $A(z)$ as

$$
A(z)=\min _{\substack{w \in \mathbb{C}^{n}, r \\\|w\| \|_{2}=1}}\left\|\mathcal{L}_{z} \mathbb{P}_{H_{\pi, z}} w\right\|_{2}, \quad a(z)=\min _{\substack{w \in T_{\pi(2)\left(S^{r}, 0\right.}\|w\|_{2}=1}}\left\|\mathcal{L}_{z} D \pi(z)^{\dagger} w\right\|_{2}
$$

for some linear operators $\mathcal{L}_{z}$ and $\mathcal{Q}_{z}$.

- Show that $\operatorname{Ker} \mathcal{Q}_{z}=\operatorname{Ker} \mathcal{L}_{z}=\operatorname{Ker}(D \pi(z))^{\perp}$ is exactly phase retrievability.
- Argue by contradiction that this implies $a_{0}, A_{0}>0$.


## Known results for $r=1$ : Phase retrievability

## Theorem (B13)

Let $\mathcal{F}$ be a frame for $\mathbb{C}^{n}$. The following are equivalent

- $\mathcal{F}$ is phase retrievable.
- $\pi(\operatorname{Ker}(\alpha)) \cap\left(S^{1,0}-S^{0,1}\right)=\pi(\operatorname{Ker}(\alpha)) \cap\left(T S^{1,0}\right)=\{0\}$
- $\operatorname{span}_{\mathbb{R}}\left\{f_{k} f_{k}^{*} z\right\}_{1 \leq k \leq m}=\operatorname{span}_{\mathbb{R}}(i z)^{\perp}$ for all $z \in \mathbb{C}^{n} \backslash\{0\}$.
- dim span $\mathbb{R}\left\{f_{k} f_{k}^{*} z\right\}_{1 \leq k \leq m} \geq 2 n-1$ for all $z \in \mathbb{C}^{n} \backslash\{0\}$.

Note: If we define $\phi_{k}=I\left(f_{k}\right)$ then set $\Phi_{k}=j\left(f_{k} f_{k}^{*}\right)=\phi_{k} \phi_{k}^{T}+J \phi_{k} \phi_{k}^{T} J^{T}$, then we obtain two additional equivalent criteria via realification:

- $\operatorname{span}\left\{\Phi_{k} /(z)\right\}=\operatorname{span}\{J /(z)\}^{\perp}$ for all $z \in \mathbb{C}^{n} \backslash\{0\}$
- $\operatorname{dim} \operatorname{span}\left\{\Phi_{k} l(z)\right\} \geq 2 n-1$ for all $z \in \mathbb{C}^{n} \backslash\{0\}$.


## Known results for $r=1$ : Lipschitz inversion of $\alpha$

Set $\Phi_{k}=j\left(f_{k} f_{k}^{*}\right)=\phi_{k} \phi_{k}^{T}+J \phi_{k} \phi_{k}^{T} J^{T}$ as before. For $z \in \mathbb{C}^{n} \backslash\{0\}$ define the real $2 n \times 2 n$ matrix $\mathcal{S}_{z}=\sum_{k: \Phi_{k} l(z) \neq 0} \frac{1}{\left\langle\Phi_{k} l(z), l(z)\right\rangle} \Phi_{k} l(z) l(z)^{T} \Phi_{k}$. Set $\mathcal{S}_{0}=0$. Then

## Theorem (B13)

Let $\mathcal{F}$ be a phase retrievable frame for $\mathbb{C}^{n}$. Then

- For every $z \in \mathbb{C}^{n} \backslash\{0\}, A(z)=\lambda_{2 n-1}\left(\mathcal{S}_{z}\right)>0$
- For every $z \in \mathbb{C}^{n} \backslash\{0\}, \mathcal{S}_{z} \geq A(z) \mathbb{P}_{J /(z)^{\perp}}=A(z) \mathbb{P}_{K e r D j o \pi(I(z))^{\perp}}$
- $A_{0}=A(0)>0$
- $B(z)=\lambda_{1}\left(\mathcal{S}_{z}+\sum_{k:\left\langle z, f_{k}\right\rangle_{\mathrm{C}}=0} \Phi_{k}\right)$
- $B_{0}=B(0)<\infty$

Remark: $\Phi_{k} l(z)=j\left(f_{k} f_{k}^{*} z\right)=j\left(\left\langle z, f_{k}\right\rangle_{\mathbb{C}} f_{k}\right)$. Hence $\Phi_{k} l(z)=0 \Longleftrightarrow\left\langle z, f_{k}\right\rangle_{\mathbb{C}}=0$

## Known results for $r=1$ : Lipschitz inversion of $\beta$

Set $\Phi_{k}=j\left(f_{k} f_{k}^{*}\right)=\phi_{k} \phi_{k}^{T}+J \phi_{k} \phi_{k}^{T} J^{T}$. For $z \in \mathbb{C}^{n} \backslash\{0\}$ define the real $2 n \times 2 n$ matrix $\mathcal{R}_{z}=\sum_{k=1}^{m} \Phi_{k} l(z) /(z)^{T} \Phi_{k}$. Then

## Theorem (B13)

Let $\mathcal{F}$ be a phase retrievable frame for $\mathbb{C}^{n}$. Then

- For every $z \in \mathbb{C}^{n} \backslash\{0\}, a(z)=\lambda_{2 n-1}\left(\mathcal{R}_{z}\right) /\|/(z)\|_{2}^{2}$
- For every
$z \in \mathbb{C}^{n} \backslash\{0\}, \mathcal{R}_{z} \geq a(z)\|/(z)\|_{2}^{2} \mathbb{P}_{J /(z)^{\perp}}=a(z)\|/(z)\|_{2}^{2} \mathbb{P}_{\operatorname{KerDjo\pi }^{\prime}(/(z))^{\perp}}$
- $a_{0}=a(0)=\min _{\|z\|_{2}=1} \lambda_{2 n-1}\left(\mathcal{R}_{z}\right)>0$
- For every $z \in \mathbb{C}^{n} \backslash\{0\}, b(z)=\lambda_{1}\left(\mathcal{R}_{z}\right) /\|/(z)\|^{2}$
- $b_{0}=b(0)<\infty$


## Computational lemma concerning $d_{p}, D_{p}$

The following facts are key in proving stability of $\alpha$ and $\beta$ respectively:

## Lemma

- $D_{p}(x, y)=\|x-y\|_{p}$ if and only if $x^{*} y=y^{*} x$ and $x^{*} y \geq 0$
- $d_{p}(x, y)=\left\|D \pi\left(\frac{x+y}{2}\right)(x-y)\right\|_{p}$ Where $D \pi(z): \mathbb{C}^{n, r} \rightarrow T_{\pi(z)}\left(S^{r, 0}\right)$ is the differential of $\pi$. Moreover, when $r=1$ we have

$$
d_{1}(x, y)=\left\|x x^{*}-y y^{*}\right\|_{1}=\left\|\frac{x+y}{2}\right\|_{2}\left\|\mathbb{P}_{K e r D \pi\left(\frac{x+y}{2}\right)^{\perp}}(x-y)\right\|_{2}
$$

## Geometry of $S^{r, 0}$

## Theorem

$S^{r, 0}$ is a disjoint union of smooth manifolds $S^{s, 0}$, each the image of the Riemannian submersion $\pi: \mathbb{C}_{*}^{n, s} \rightarrow S^{s, 0}$. That is to say if $D \pi(z): \mathbb{C}^{n, r} \rightarrow T_{\pi(z)}\left(S^{r, 0}\right)$ is the differential of $\pi$ and $\mathbb{C}^{n, r}=H_{z} \oplus V_{z}$ is the decomposition into the horizontal and vertical space, then $\left.D \pi(z)\right|_{H_{z}}$ is a metric preserving surjection for every $z \in \mathbb{C}_{*}^{n, r}$. Moreover,

- $V_{z}=\operatorname{Ker} D \pi(z)=\left\{i z S \mid S \in \operatorname{Sym}\left(\mathbb{C}^{n}\right)\right\}$. Since $z \in \mathbb{C}_{*}^{n, r}$ we have $\operatorname{dim}_{\mathbb{R}} V_{z}=r^{2}$
- $H_{z}=(\operatorname{Ker} D \pi(z))^{\perp}=\left\{H z+\operatorname{Rz} \mid H \in \operatorname{Sym}\left(\mathbb{C}^{n}\right), \operatorname{Ran}(H) \subset \operatorname{Ran}(z), \operatorname{Ran}(R) \perp\right.$ $\operatorname{Ran}(z)\}$. Since $z \in \mathbb{C}_{*}^{n, r}$ we have $\operatorname{dim}_{\mathbb{R}} H_{z}=2 n r-r^{2}$.
- The Riemannian submersion $\pi$ induces a unique Riemannian metric on $\check{S}^{r, 0}$ with $g_{\pi(z)}\left(X_{1}, X_{2}\right)=\left\langle D \pi(z)^{\dagger} X_{1}, D \pi(z)^{\dagger} X_{2}\right\rangle_{\mathbb{R}}$. This metric generates a geodesic distance which is precisely $D_{2}$, and can be written explicitly as

$$
\begin{aligned}
g_{\pi(z)}\left(X_{1}, X_{2}\right) & =\operatorname{Tr}\left[\int_{0}^{\infty} X_{1} \mathbb{P}_{\operatorname{Ran}(z)} e^{-\pi(z) u} X_{2} \mathbb{P}_{\operatorname{Ran}(z)} e^{-\pi(z) u} d u\right] \\
& +\Re \operatorname{Tr}\left[\mathbb{P}_{\operatorname{Ran}(z)^{\perp}} X_{1} \pi(z)^{\dagger} X_{2}\right]
\end{aligned}
$$

As before we can lift to the realification, and after a bit of work obtain

$$
\operatorname{Ker}(D j \circ \pi(I(z)))=\left\{J I(z) A \mid A \in \operatorname{Sym}\left(\mathbb{R}^{r}\right)\right\} \oplus\left\{I(z) K \mid K \in \operatorname{Asym}\left(\mathbb{R}^{r}\right)\right\}
$$

## Geodesics of $\dot{S}^{r, 0}$

Following [BTY18] one can employ the following theorem:

## Theorem

Let $(\mathcal{M}, h)$ and $(\mathcal{N}, g)$ be Riemannian manifolds and $\pi:(\mathcal{M}, h) \rightarrow(\mathcal{N}, g)$ a Riemannian submersion. Let $\gamma$ be a geodesic in $(\mathcal{M}, h)$ such that $\gamma^{\prime}(0)$ is horizontal. Then

- $\gamma^{\prime}(t)$ is horizontal for all $t$.
- $\pi \circ \gamma$ is a geodesic in $(\mathcal{N}, g)$ of the same length as $\gamma$

To obtain the geodesic connecting $A, B \in\left(S^{\circ}, 0, g\right)$ as

$$
\begin{aligned}
& \gamma_{A, B}:[0,1] \rightarrow \mathrm{S}^{r, 0} \\
& \gamma(t)=t^{2} B+(1-t)^{2} A+t(1-t)(\sqrt{A B}+\sqrt{B A})
\end{aligned}
$$

The length of this geodesic is $D_{2}(a, b)$ where $\pi(a)=A$ and $\pi(b)=B$.

## Results for $r>1$ : Phase retrievability

Let $\mathcal{F}$ be a frame for $\mathbb{C}^{n}$. The following are equivalent

## Theorem

- $\mathcal{F}$ is phase retrievable
- $\pi(\operatorname{Ker}(\alpha)) \cap\left(S^{r, 0}-S^{r, 0}\right)=\pi(\operatorname{Ker}(\alpha)) \cap\left(T S^{r, 0}\right)=0$
- $\operatorname{span}_{\mathbb{R}}\left\{f_{k} f_{k}^{*} z\right\}=\left\{i z S \mid S \in \operatorname{Sym}\left(\mathbb{C}^{r}\right)\right\}^{\perp}$
- $\operatorname{span}\left\{\Phi_{k} I(z)\right\}=\left(\left\{J I(z) A \mid A \in \operatorname{Sym}\left(\mathbb{R}^{r}\right)\right\} \oplus\left\{I(z) K \mid K \in \operatorname{Asym}\left(\mathbb{R}^{n}\right)\right\}\right)^{\perp}$ for all $z \in \mathbb{C}_{*}^{n, r}$
- $\operatorname{dim} \operatorname{span}_{\mathbb{R}}\left\{f_{k} f_{k}^{*} z\right\} \geq 2 n r-r^{2}$ for all $z \in \mathbb{C}_{*}^{n, r}$.


## Results for $r>1$ : Lipschitz inversion of $\alpha$

Define the $2 n r \times 2 n r$ matrices

$$
\begin{aligned}
& \mathbb{F}_{k}=\left[\begin{array}{c|c|c}
\Phi_{k} & 0 & 0 \\
\hline 0 & \ddots & 0 \\
\hline 0 & 0 & \Phi_{k}
\end{array}\right]=\Phi_{k} \otimes \mathbb{I}_{r, r} \\
& \mathcal{S}_{z}=\sum_{k: \Phi_{k} l(z) \neq 0} \frac{1}{\left\langle\Phi_{k} l(z), I(z)\right\rangle} \mathbb{F}_{k}\left[\frac{I\left(z^{1}\right)}{\vdots} \frac{I\left(z^{r}\right)}{\vdots}\right]\left[\frac{I\left(z^{1}\right)}{\vdots}\right]^{T} \mathbb{F}_{k} \quad \mathcal{T}_{z}=\mathcal{S}_{z}+\sum_{k: \Phi_{k} l(z)=0} \mathbb{F}_{k}
\end{aligned}
$$

## Theorem

Let $\mathcal{F}$ be a phase retrievable frame for $\mathbb{C}^{n, r}$. Then

- For every $z \in \mathbb{C}_{*}^{n, r}, A(z)=\min _{\|w\|_{2}=1} \sum_{k: \Phi_{k} \prime(z) \neq 0}^{m} \operatorname{Tr}\left[I(z) \Phi_{k} \mathbb{P}_{\operatorname{Ker}(D j \circ \pi(I(z)))^{\perp}} I(w)\right]^{2}=$ $\lambda_{2 n r-r^{2}}\left(\mathcal{S}_{z}\right)>0$

- $B(z)=\max _{\|w\|_{2}=1} \sum_{k: \Phi_{k} l(z) \neq 0}^{m} \operatorname{Tr}\left[l(z) \Phi_{k} l(w)\right]^{2}+\sum_{k: \Phi_{k} l(z)=0} \operatorname{Tr}\left[l(w)^{T} \Phi_{k} I(w)\right]=$ $\lambda_{1}\left(\mathcal{T}_{z}\right)$
- $A_{0}=A(0)>0$ and $B_{0}=B(0)<\infty$


## To be continued. . .

- Analagous results for Lipschitz inversion of $\beta$.
- Relation of local Lipschitz constants to frame constants
- Determine good Lipschitz retract $\Pi: \operatorname{Sym}\left(\mathbb{C}^{n}\right) \rightarrow S^{r, 0}$ and Lips( $\Pi$ ).


## Thank you!

Thanks for listening! I would like to thank my advisor Professor Balan for giving me the opportunity to be here as well as the University of Maryland for supporting me.

## References

嗇 [AGM18] D. Azagra, EL. Gruyer, C. Mudarra. Kirszbraun's theorem via an explicit formula, arXiv preprint arXiv:1810.10288 (2018).
[BCE06] R. Balan, P. Casazza, D. Edidin, On signal reconstruction without phase, Appl.Comput.Harmon.Anal. 20 (2006), 345-356.

围 [BBCE07] R. Balan, B. Bodmann, P. Casazza, D. Edidin, Painless reconstruction from Magnitudes of Frame Coefficients, J.Fourier Anal.Applic., 15 (4) (2009), 488-501.
[B12] R. Balan, Reconstruction of Signals from Magnitudes of Frame Representations, arXiv submission arXiv:1207.1134
[B13] R. Balan, Reconstruction of Signals from Magnitudes of Redundant Representations: The Complex Case, available online arXiv:1304.1839v1, Found.Comput.Math. 2015, http://dx.doi.org/10.1007/s10208-015-9261-0
[BTY18] R. Bhatia, J. Tanvi, L. Yongdo. On the BuresWasserstein distance between positive definite matrices, Expositiones Mathematicae (2018).
[BW14] R. Balan and Y. Wang, Invertibility and Robustness of Phaseless Reconstruction, available online arXiv:1308.4718v1, Appl. Comp. Harm. Anal., 38 (2015), 469-488.
[BZ14] R. Balan, D. Zou, On Lipschitz inversion of nonlinear redundant representations, to appear in Contemporary Mathematics 2015.
[BZ15] R. Balan, D. Zou, On Lipschitz Analysis and Lipschitz Synthesis for the Phase Retrieval Problem, available online arXiv 1506.02092v1 [mathFA], 6 June 2015; Lin. Alg. and Appl. 2016.
[Bal15] R. Balan, The Fisher Information Matrix and the Cramer-Rao Lower Bound in a Non-Additive White Gaussian Noise Model for the Phase Retrieval Problem, proceedings of SampTA 2015.

囦 [BCMN14] A. S. Bandeira, J. Cahill, D. Mixon, A. A. Nelson, Saving phase: Injectivity and Stability for phase retrieval, arXiv submission , arXiv: 1302.4618, Appl. Comp. Harm. Anal. 37 (1) (2014), 106-125.

固 [BK00] R. Bhatia, F. Kittaneh, Notes on matrix arithmetic-geometric mean inequalities, Lin.Alg.Appl. 308 (2000), 203-211.
[EM12] Y. C. Eldar, S. Mendelson, Phase retrieval: Stability and recovery guarantees, available online: arXiv:1211.0872, Appl. Comp. Harm. Anal. (2014), .

囯 [HG13] M.J. Hirn, E. Le Gruyer, A general theorem of existence of quasi absolutely minimal Lipschitz extensions, arXiv:1211.5700v2 [math.FA], 8 Aug 2013.

甬 [PV19] J. Pitrik, Jzsef, and D. Virosztek. Quantum Hellinger distances revisited, arXiv preprint arXiv:1903.10455 (2019).
[ZB06] L. Zwald, G. Blanchard, On the convergence of eigenspaces in kernel Principal Component Analysis, Proc. NIPS 05, vol. 18, 1649-1656, MIT Press, 2006.

