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Lipschitz Inversion

Given: A nonlinear map β : S → Rm from a metric space (S,D) to Euclidean
space (Rm, d). We also assume S ⊂ H where H is a Hilbert space.
Would like: A left inverse ω : Rm → S that is globally Lipschitz.
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Approach

1 Obtain an L-Lipschitz inverse β−1 : β(S)→ S ⊂ H

2 Use Kirszbraun’s Theorem to obtain an L-Lipschitz extension ω̂ : Rm → H.
See recent constructible proofs of Kirszbraun [AGM18].

3 If S is a Lipschitz retract, form ω : Rm → S, ω = Π ◦ ω̂ where Π : H → S is
the Lipschitz retraction.
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Spaces

In this talk we will take H = Sym(Cn) ⊂ Cn×n to be our ambient Hilbert space,
endowed with real inner product 〈A,B〉R := <Tr[A∗B]. Options for S include

1 Convex cone of PSD

Sym+
C := {S ∈ Sym(Cn)|S ≥ 0}

2 Low rank quantum states

Mr := {S ∈ Sym+
C |rank(S) ≤ r ,Tr[S ] = 1}

3 Pure quantum states M1

4 Cone of low-rank mixed signature signals

Sp,q := {S ∈ Sym(Cn)|S has at most p positive eigenvalues

and q negative eigenvalues}
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Sp,q

We denote by S̊p,q the subset of Sp,q having exactly p positive and q negative
eigenvalues. One can show

Theorem
For every pair of non-negative integers p and q

Sp,q is a closed semi-algebraic set.

Sp,q = Sp,0 + S0,q = Sp,0 − Sq,0.

Sp,q ' Cn,p+q/U(p, q) where the quotient is by the p + q × p + q possibly
indefinite unitary matrices acting on the right.

Sp,q = {xx∗ − yy∗|x ∈ Cn,p y ∈ Cn,q}
Sp,q = ∪0≤s≤p ∪0≤t≤q S̊

s,t .

S̊p,q is a smooth manifold of dimension 2n(p + q)− (p + q)2.

S̊ r ,0 ' Cn,r
∗ /U(r) where Cn,r

∗ denotes the full rank tall matrices.

S r ,r ' TS̊ r ,0 where TS̊ r ,0 is the tangent bundle.
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Semi Metric Structure on Cn,r induced by S r ,0

The identification S r,0 ' Cn,r/U(r) can be made explicit via the quotient map

π : Cn,r → S r,0

π(z) = zz∗

Given that, we find two non-equivalent classes of semi metrics on Cn,r

dp,Dp : Cn,r × Cn,r → R.
The norm induced metrics:

dp(x , y) = ||π(x)− π(y)||p = ||xx∗ − yy∗||p
And the natural metrics:

Dp(x , y) = min
x∈[x]
y∈[y ]

||x − y ||p = min
U∈U(r)

||x − yU||p

We have the following identity:

D2(x , y) =

√
Tr(π(x)) + Tr(π(y))− 2||

√
π(x)

√
π(y)||1

Remark: it is a consequence of the Arithmetic-Geometric Mean Inequality that: [BK00]

1

2
||
√
π(x)−

√
π(y)||22 ≤ min

x∈[x]
y∈[y ]

||x − y ||22 ≤ ||
√
π(x)−

√
π(y)||22

That is D2 is comparable to the Bures-Hellinger distance.
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Quantum Tomography

It is common in physics to model a system as a statistical ensemble over pure
quantum states ψ1, . . . , ψr ⊂ H having ensemble probabilities pi of being in state
ψi . In the finite dimensional case, we may take H = Cn. In this case, the density
matrix

ρ :=
r∑

j=1

prψjψ
∗
j

contains all of the knowable information about the system. For instance, the
expectation of a given observable A ∈ Sym(Cn) is Tr[ρA]. Note that the collection
of all such density matrices is precisely Mr . The problem of quantum tomography
is to infer ρ from noisy measurements of the formTr[ρF1]

...
Tr[ρFm]

+ ν
ω7→ ρ̂ ν ∼ N (0, σ2)

In such a way that ||ρ− ρ̂||H ≤ C ||ν||2
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α and β maps

It suffices to consider our observables {Fk}mk=1 to lie in Sym(Cn)+; if not we may

simply define F̃k = Fk +µI so that Tr[ρFk ] = Tr[ρF̃k ]−µ with µ ∈ R large enough
that all of the F̃k are positive. In this case there exists z ∈ Cn,r and fk ∈ Cn,r so
that that ρ = π(z) and F̃k = π(fk), so that the problem of noisy quantum
inference is equivalent to whether the following map is Lipschitz invertible:

β : Cn×r/U(r)→ Rm

βk(z) := 〈π(z), π(fk)〉R (equal to |〈z , fk〉C|2 when r = 1)

In analogy with the classical phase retrieval problem we also define

α : Cn×r/U(r)→ Rm

αk(z) := 〈π(z), π(fk)〉
1
2

R (equal to |〈z , fk〉C| when r = 1)

Note that we are relaxing our requirement that the estimate ρ̂ = ω(x) have unit
trace. We do this because Mr is not contractible when r < n, and so no Lipschitz
retract Π : Sym(Cn)→Mr is possible.
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α and β maps (stability)

The set of observables F := {Fk}mk=1 = {π(fk)}mk=1 is called phase retrievable if the
analysis maps α and β are injective.
By scaling, it is natural to analyze the Lipschitz constants of

α : (Cn×r/U(r),Dp)→ (Rm, || · ||2)

β : (Cn×r/U(r), dp)→ (Rm, || · ||2)

What we would like to show is the following:

Theorem

Assume F = {F1, . . . ,Fk} ⊂ Sym+
C is phase retrievable. Then there are constants

a0,A0, b0,B0 > 0 so that for every x , y ∈ Cn×r/U(r)

A0D2(x , y)2 ≤
m∑

k=1

|〈π(x), π(fk)〉1/2
R − 〈π(y), π(fk)〉1/2

R |
2 ≤ B0D2(x , y)2

a0d1(x , y)2 ≤
m∑

k=1

|〈π(x), π(fk)〉R − 〈π(y), π(fk)〉R|2 ≤ b0d1(x , y)2

Remark: The nuclear norm is the easiest to manipulate in this context, but of course d1

and d2 are comparable.
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Local Lipschitz Constants

In order to make the problem more tractable we analyze the local Lipschitz
properties of α and β:

A(z) = lim
R→0

inf
D2(x,z)<R
D2(y ,z)<R
π(x)6=π(y)

∑m
k=1 |〈π(x), π(fk)〉1/2

R − 〈π(y), π(fk)〉1/2
R |2

D2(x , y)2

B(z) = lim
R→0

sup
D2(x,z)<R
D2(y ,z)<R
π(x)6=π(y)

∑m
k=1 |〈π(x), π(fk)〉1/2

R − 〈π(y), π(fk)〉1/2
R |2

D2(x , y)2

a(z) = lim
R→0

inf
d1(x,z)<R
d1(y ,z)<R
π(x) 6=π(y)

∑m
k=1 |〈π(x), π(fk)〉R − 〈π(y), π(fk)〉R|2

d1(x , y)2

b(z) = lim
R→0

sup
d1(x,z)<R
d1(y ,z)<R
π(x) 6=π(y)

∑m
k=1 |〈π(x), π(fk)〉R − 〈π(y), π(fk)〉R|2

d1(x , y)2
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Realification

Because Dπ(z) : Cn,r → Tπ(z)(S̊
r ,0),Dπ(z)(w) = zw∗ + wz∗ is real linear but not

complex linear, it is natural to view the local Lipschitz problem in terms of the
realifications of the objects involved. Define the linear isomorphism

l : Cn,r → R2n,r with l(A) =

[
<A
=A

]
and the algebra homomorphism

j : Cn,r → R2n,2r with j(A) =

[
<A −=A
=A <A

]
. Note that

j(A) =
[
l(A) Jl(A)

]
, J =

[
0 −In×n

In×n 0

]
We have, for example in the case r = 1:

spanR{iz} = Ker(Dπ(z)) ' Ker(Dj ◦ π(l(z))) = span(Jl(z))
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Sketch of argument

For z ∈ Cn,r
∗ formulate a(z) and A(z) as

A(z) = min
w∈Cn,r

||w||2=1

||LzPHπ,zw ||2, a(z) = min
w∈Tπ(z)(S̊r,0)
||w||2=1

||LzDπ(z)†w ||2

for some linear operators Lz and Qz .

Show that KerQz= KerLz = Ker(Dπ(z))⊥ is exactly phase retrievability.

Argue by contradiction that this implies a0,A0 > 0.
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Known results for r=1: Phase retrievability

Theorem (B13)

Let F be a frame for Cn. The following are equivalent

F is phase retrievable.

π(Ker(α)) ∩ (S1,0 − S0,1) = π(Ker(α)) ∩ (TS̊1,0) = {0}
spanR{fk f ∗k z}1≤k≤m = spanR(iz)⊥ for all z ∈ Cn \ {0}.
dim spanR{fk f ∗k z}1≤k≤m ≥ 2n − 1 for all z ∈ Cn \ {0}.

Note: If we define φk = l(fk) then set Φk = j(fk f
∗
k ) = φkφ

T
k + Jφkφ

T
k J

T , then we
obtain two additional equivalent criteria via realification:

span{Φk l(z)} = span{Jl(z)}⊥ for all z ∈ Cn \ {0}
dim span{Φk l(z)} ≥ 2n − 1 for all z ∈ Cn \ {0}.
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Known results for r=1: Lipschitz inversion of α

Set Φk = j(fk f
∗
k ) = φkφ

T
k + Jφkφ

T
k J

T as before. For z ∈ Cn \ {0} define the real
2n × 2n matrix Sz =

∑
k:Φk l(z)6=0

1
〈Φk l(z),l(z)〉Φk l(z)l(z)TΦk . Set S0 = 0. Then

Theorem (B13)

Let F be a phase retrievable frame for Cn. Then

For every z ∈ Cn \ {0},A(z) = λ2n−1(Sz) > 0

For every z ∈ Cn \ {0},Sz ≥ A(z)PJl(z)⊥ = A(z)PKerDj◦π(l(z))⊥

A0 = A(0) > 0

B(z) = λ1(Sz +
∑

k:〈z,fk〉C=0 Φk)

B0 = B(0) <∞

Remark: Φk l(z) = j(fk f
∗
k z) = j(〈z , fk〉Cfk). Hence Φk l(z) = 0 ⇐⇒ 〈z , fk〉C = 0
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Known results for r=1: Lipschitz inversion of β

Set Φk = j(fk f
∗
k ) = φkφ

T
k + Jφkφ

T
k J

T . For z ∈ Cn \ {0} define the real 2n × 2n
matrix Rz =

∑m
k=1 Φk l(z)l(z)TΦk . Then

Theorem (B13)

Let F be a phase retrievable frame for Cn. Then

For every z ∈ Cn \ {0}, a(z) = λ2n−1(Rz)/||l(z)||22
For every
z ∈ Cn \ {0},Rz ≥ a(z)||l(z)||22PJl(z)⊥ = a(z)||l(z)||22PKerDj◦π(l(z))⊥

a0 = a(0) = min||z||2=1 λ2n−1(Rz) > 0

For every z ∈ Cn \ {0}, b(z) = λ1(Rz)/||l(z)||2

b0 = b(0) <∞

Chris Dock (UMD) Quantum Inference as Phase Retrieval September 30, 2021 16 / 23



Computational lemma concerning dp,Dp

The following facts are key in proving stability of α and β respectively:

Lemma

Dp(x , y) = ||x − y ||p if and only if x∗y = y∗x and x∗y ≥ 0

dp(x , y) = ||Dπ( x+y
2 )(x − y)||p Where Dπ(z) : Cn,r → Tπ(z)(S̊

r ,0) is the
differential of π. Moreover, when r = 1 we have

d1(x , y) = ||xx∗ − yy∗||1 = ||x + y

2
||2||PKerDπ( x+y

2 )⊥(x − y)||2
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Geometry of S r ,0

Theorem

S r,0 is a disjoint union of smooth manifolds S̊ s,0, each the image of the Riemannian
submersion π : Cn,s

∗ → S̊ s,0. That is to say if Dπ(z) : Cn,r → Tπ(z)(S
r,0) is the

differential of π and Cn,r = Hz ⊕ Vz is the decomposition into the horizontal and vertical
space, then Dπ(z)|Hz is a metric preserving surjection for every z ∈ Cn,r

∗ . Moreover,

Vz = KerDπ(z) = {izS |S ∈ Sym(Cn)}. Since z ∈ Cn,r
∗ we have dimR Vz = r 2

Hz = (KerDπ(z))⊥ = {Hz + Rz |H ∈ Sym(Cn),Ran(H) ⊂ Ran(z),Ran(R) ⊥
Ran(z)}. Since z ∈ Cn,r

∗ we have dimR Hz = 2nr − r 2.

The Riemannian submersion π induces a unique Riemannian metric on S̊ r,0 with
gπ(z)(X1,X2) = 〈Dπ(z)†X1,Dπ(z)†X2〉R. This metric generates a geodesic distance
which is precisely D2, and can be written explicitly as

gπ(z)(X1,X2) = Tr[

∫ ∞
0

X1PRan(z)
e−π(z)uX2PRan(z)

e−π(z)udu]

+ <Tr[PRan(z)⊥X1π(z)†X2]

As before we can lift to the realification, and after a bit of work obtain

Ker(Dj ◦ π(l(z))) = {Jl(z)A|A ∈ Sym(Rr )} ⊕ {l(z)K |K ∈ Asym(Rr )}
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Geodesics of S̊ r ,0

Following [BTY18] one can employ the following theorem:

Theorem

Let (M, h) and (N , g) be Riemannian manifolds and π : (M, h)→ (N , g) a
Riemannian submersion. Let γ be a geodesic in (M, h) such that γ′(0) is
horizontal. Then

γ′(t) is horizontal for all t.

π ◦ γ is a geodesic in (N , g) of the same length as γ

To obtain the geodesic connecting A,B ∈ ( ˚S r ,0, g) as

γA,B : [0, 1]→ S̊ r ,0

γ(t) = t2B + (1− t)2A + t(1− t)(
√
AB +

√
BA)

The length of this geodesic is D2(a, b) where π(a) = A and π(b) = B.
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Results for r > 1: Phase retrievability

Let F be a frame for Cn. The following are equivalent

Theorem
F is phase retrievable

π(Ker(α)) ∩ (S r ,0 − S r ,0) = π(Ker(α)) ∩ (TS̊ r ,0) = 0

spanR{fk f ∗k z} = {izS |S ∈ Sym(Cr )}⊥

span{Φk l(z)} = ({Jl(z)A|A ∈ Sym(Rr )} ⊕ {l(z)K |K ∈ Asym(Rn)})⊥ for all
z ∈ Cn,r

∗

dim spanR{fk f ∗k z} ≥ 2nr − r2 for all z ∈ Cn,r
∗ .
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Results for r > 1: Lipschitz inversion of α

Define the 2nr × 2nr matrices

Fk =

 Φk 0 0

0
. . . 0

0 0 Φk

 = Φk ⊗ Ir,r

Sz =
∑

k:Φk l(z) 6=0

1

〈Φk l(z), l(z)〉Fk

 l(z1)
...

l(z r )


 l(z1)

...

l(z r )


T

Fk Tz = Sz +
∑

k:Φk l(z)=0

Fk

Theorem
Let F be a phase retrievable frame for Cn,r . Then

For every z ∈ Cn,r
∗ ,A(z) = min||w||2=1

∑m
k:Φk l(z) 6=0 Tr[l(z)ΦkPKer(Dj◦π(l(z)))⊥ l(w)]2 =

λ2nr−r2 (Sz) > 0

SZ ≥ A(z)P
({Jl(z)A|A∈Sym(Rr )}⊕{l(z)K |K∈Asym(Rn)})⊥ = A(z)PKer(Dj◦π(l(z)))⊥

B(z) = max||w||2=1

∑m
k:Φk l(z) 6=0 Tr[l(z)Φk l(w)]2 +

∑
k:Φk l(z)=0 Tr[l(w)TΦk l(w)] =

λ1(Tz)

A0 = A(0) > 0 and B0 = B(0) <∞
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To be continued. . .

Analagous results for Lipschitz inversion of β.

Relation of local Lipschitz constants to frame constants

Determine good Lipschitz retract Π : Sym(Cn)→ S r ,0 and Lips(Π).
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Thank you!

Thanks for listening! I would like to thank my advisor Professor Balan for giving
me the opportunity to be here as well as the University of Maryland for supporting
me.
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