Lipschitz Analysis of Phase Retrievable Matrix Frames

Chris Dock

Radu Balan

University of Maryland
cdock@umd.edu, rvbalan@umd.edu

October 23, 2021

Special Session on Harmonic Analysis, Frames and Sampling 2021 Fall Sectional Meeting of the AMS

Overview

(1) Introduction to the problem
(2) Lipschitz Embeddings
(3) Geometry of $S^{r, 0}\left(\mathbb{C}^{n}\right)$
(4) Stability bounds
(5) Criteria for phase retrievability

The Complex Phase Retrieval Problem: Variants

- Continuous Fourier: Recover $f \in \mathcal{B} \subset\left\{f \in S^{\prime}(\mathbb{R}) \mid \hat{f} \in L_{\text {loc }}^{1}(\mathbb{R})\right\}$ from $|\hat{f}|$. Only possible if \mathcal{B} is sufficiently restrictive - for example if f is taken to have compact support or is supported in the half line.[9]
- Discrete Fourier: Recover $f=(f[0], \ldots, f[n-1]) \in \mathbb{C}^{n}$ from the (typically squared) magnitudes of its DFT coefficents $y[k]=\left|\sum_{j=0}^{n} y[j] e^{2 \pi i k j / n}\right|^{2}$.
- Separable Hilbert space: Take H a separable complex Hilbert space. Recover $z \in H$ from $\left(\left|\left\langle z, f_{k}\right\rangle\right|\right)_{k \in I}$ where $\left(f_{k}\right)_{k \in I} \subset H$ is a frame for H.
- Finite Hilbert space: Recover $z \in H=\mathbb{C}^{n}$ from $\left(\left|\left\langle z, f_{k}\right\rangle\right|\right)_{k=1}^{m}$ where $\left(f_{k}\right)_{k=1}^{m}$ is a frame for \mathbb{C}^{n}.
- Phase Retrieval with generalized frames: Recover $z \in H=\mathbb{C}^{n}$ from $\left\langle z, A_{j} z\right\rangle$ where $\left(A_{j}\right)_{j=1}^{m}$ is a generalized frame of Hermitian matrices (termed measurement matrices). Note that $A_{j}=f_{j} f_{j}^{*}$ gives the finite Hilbert space case.
In all such cases recovery is only ever possible up to an overall phase - that is to say modulo the action of $U(1)$.

Applications

- Inverse Problem in Potential Scattering - Determine potential / surface structure from (typically x-ray or neutron) scattering matrix.[9]
- Thin film optics - Inferring dielectric permittivity $\epsilon(z)$ of medium from the frequency dependence of the ratio $R(k)$ of the strength of transmitted and reflected tangential components.[9]
- Coherent Diffraction Imaging - infer shape of object in imaging plane from the diffraction pattern it produces under a coherent beam.[5]
- X-ray crystallography - infer electron density function $\rho(r)=\sum_{i=1}^{N} r_{i} \delta\left(r-r_{i}\right)$ of a single crystal cell from the measured diffraction pattern. [8]
- Speech recognition - the human ear is quite reliably "phase deaf," determining what has been said only from the magnitude spectrum of a signal.[4]
- Pure state quantum tomography - inferring the state of a quantum system (represented by a vector in a Hilbert space) from potentially noisy measurements.[1][7]

Motivating Application: Mixed Quantum Tomography

A mixed state quantum system is modeled as a statistical ensemble over pure quantum states living in a Hilbert space H. The standard example is unpolarized light. In such cases, all of the measurable information in the system is contained in a density matrix:

$$
\rho=\sum_{j \in \mathcal{I}} p_{j} \psi_{j} \psi_{j}^{*}
$$

- p_{j} - ensemble probability of being in pure state $\psi_{j}: \sum_{i \in \mathcal{I}} p_{j}=1$.
- $\psi_{j} \in H$ - a pure state: Given an observable (Hermitian matrix) A with eigenpair (v, λ) we have $\operatorname{Pr}_{\psi_{j}}[A$ takes value $\lambda]=\left|\left\langle v, \psi_{j}\right\rangle\right|^{2}$. If we take $H=\mathbb{C}^{n}$ and $|\mathcal{I}|=r$ then ρ is a positive semi-definite matrix of rank at most r and having unit trace, we write $\rho \in S^{r, 0}\left(\mathbb{C}^{n}\right) \cap\left\{x \in \operatorname{Sym}\left(\mathbb{C}^{n}\right) \mid \operatorname{tr}\{x\}=1\right\}$. The goal of quantum tomography is to infer ρ from measurements of a collection of observables $\left(A_{j}\right)_{j=1}^{m}$.

Motivating Application: Mixed Quantum Tomography

The expectation of an observable A_{j} in mixed state ρ is

$$
\mathbb{E}_{\rho}\left[A_{j}\right]=\sum_{k=1}^{r} p_{k}\left\langle\psi_{k}, A_{j} \psi_{k}\right\rangle=\sum_{k=1}^{r} p_{k} \operatorname{tr}\left\{\psi_{k} \psi_{k}^{*} A_{j}\right\}=\operatorname{tr}\left\{\rho A_{j}\right\}=\left\langle\rho, A_{j}\right\rangle
$$

By repeatedly measuring our observables and allowing the system to "relax" we may obtain these expectations to within a small error. Since $\rho \in S^{r, 0}\left(\mathbb{C}^{n}\right)$ we may write via Cholesky factorization for some $z \in \mathbb{C}^{n \times r}$

$$
\rho=z z^{*}
$$

Note ρ is unchanged by $z \mapsto z U$ for $U \in U(r)$, so the problem becomes to stably recover z modulo $U(r)$ (a "unitary phase") from $\left(\left\langle z z^{*}, A_{j}\right\rangle\right)_{j=1}^{m}$. In particular we would like the following map to be injective (and indeed lower Lipschitz):

$$
\begin{aligned}
& \beta: \mathbb{C}^{n \times r} / U(r) \rightarrow \mathbb{R}^{m} \\
& \beta(z)=\left(\left\langle z z^{*}, A_{j}\right\rangle\right)_{j=1}^{m}
\end{aligned}
$$

A generalized frame $\left(A_{j}\right)_{j=1}^{m}$ for which β is injective is called $U(r)$ phase retrievable.

$U(r)$ phase retrievability

A generalized frame $\left(A_{j}\right)_{j=1}^{m}$ for which β is injective is called $U(r)$ phase retrievable.

- As for $U(1), U(r)$ phase retrievability is a stronger condition than being a generalized frame for $\mathbb{C}^{n \times r}$.
- If \mathcal{A} is a frame for $\operatorname{Sym}\left(\mathbb{C}^{n}\right)$ itself then it is automatically $U(r)$ phase retrievable.
- if \mathcal{A} is $U(r)$ phase retrievable then it is $U(k)$ phase retrievable for any $1 \leq k \leq r$, in particular it is phase retrievable.
Thus the concept of being $U(r)$ phase retrievable is an intermediate between being phase retrievable for \mathbb{C}^{n} and being a frame for $\operatorname{Sym}\left(\mathbb{C}^{n}\right)$. Another way to think about $U(r)$ phase retrieval is as low rank positive semi-definite matrix recovery. In analogy with the pure state case in which one is also interested in the stable recovery properties of the non-linear measurement map $\alpha_{j}(x)=\left|\left\langle x, f_{j}\right\rangle\right|$ we define

$$
\begin{gathered}
\alpha: \mathbb{C}^{n \times r} / U(r) \rightarrow \mathbb{R}^{m} \\
\alpha(z)=\left(\left\langle z z^{*}, A_{j}\right\rangle^{\frac{1}{2}}\right)_{j=1}^{m}
\end{gathered}
$$

The problem

The problem is then to

- Identify appropriate distances on $\mathbb{C}^{n \times r} / U(r)$ to use for stability analysis of α and β.
- Find out whether $\beta(\alpha)$ is lower Lipschitz on its range whenever $\left(A_{j}\right)_{j=1}$ is $U(r)$ phase retrievable.
- If so, provide a means of computing the lower Lipschitz constant for $\beta(\alpha)$.
- Give if and only if criteria for a given frame of observables to be phase retrievable.

Lower Lipschitz with respect to what?

We define the equivalence relation \sim on $\mathbb{C}^{n \times r}$ via

$$
x \sim y \Longleftrightarrow \exists U \in U(r) \mid x=y U
$$

and denote by $[x]$ the equivalence class of $x \in \mathbb{C}^{n \times r}$, and by $\mathbb{C}^{n \times r} / U(r)$ the collection of equivalence classes $\left\{[x] \mid x \in \mathbb{C}^{n \times r}\right\}$. We define $D, d: \mathbb{C}^{n \times r} \times \mathbb{C}^{n \times r} \rightarrow \mathbb{R}$:

$$
\begin{aligned}
D(x, y) & =\min _{U \in U(r)}\|x-y U\|_{2}=\sqrt{\|x\|_{2}^{2}+\|y\|_{2}^{2}-2\left\|x^{*} y\right\|_{1}} \\
d(x, y) & =\min _{U \in U(r)}\|x-y U\|_{2}\|x+y U\|_{2}=\sqrt{\left(\|x\|_{2}^{2}+\|y\|_{2}^{2}\right)^{2}-4\left\|x^{*} y\right\|_{1}^{2}}
\end{aligned}
$$

- D is known as the Bures-Wasserstein distance. Note for $\lambda \in \mathbb{C}$ $D(\lambda x, \lambda y)=|\lambda| D(x, y)$, so D is appropriate for analyzing the α map.
- d scales like $d(\lambda x, \lambda y)=|\lambda|^{2} d(x, y)$ and is appropriate for analyzing β.
- d and D are not Lipschitz equivalent (they scale differently) but they do generate the same topology on $\mathbb{C}^{n \times r} / U(r)$.

Lipschitz with respect to what?

Both $d(x, y)$ and $D(x, y)$ are positive and symmetry follows from the fact that that $U(r)$ is a group. Owing to the compactness of $U(r)$, both $D(x, y)$ and $d(x, y)$ are zero if and only if there exists U_{0} such that $x=y U_{0}$, that is if and only if $[x]=[y]$. Let $U_{1}, U_{2} \in U(r)$ be the minimizers for $D(x, z)$ and $D(z, y)$ respectively. Then

$$
\begin{aligned}
D(x, z)+D(y, z) & =\left\|x-z U_{1}\right\|_{2}+\left\|z-y U_{2}\right\|_{2} \\
& =\left\|x-z U_{1}\right\|_{2}+\left\|z U_{1}-y U_{2} U_{1}\right\|_{2} \\
& \geq\left\|x-y U_{2} U_{1}\right\|_{2} \geq D(x, y)
\end{aligned}
$$

The proof for d is identical except for the fact that it employs the triangle inequality not for $\|x-y\|_{2}$ but for $\|x-y\|_{2}\|x+y\|_{2}$. That the latter satisfies the triangle inequality reduces to a fact about the analytic geometry of parallelipipeds in \mathbb{R}^{3}, namely that the sum of the products of face diagonals on any two sides sharing a vertex exceeds the product of the third side sharing the vertex. We show that for $x, y \in \mathbb{R}^{n}\|x-y\|_{2}\|x+y\|_{2}=\left\|x x^{\top}-y y^{\top}\right\|_{1}$.

Lipschitz Embeddings

We would like to embed the metric spaces $\left(\mathbb{C}^{n \times r} / U(r), D\right)$ and $\left(\mathbb{C}^{n \times r} / U(r), d\right)$ into $\left(\operatorname{Sym}\left(\mathbb{C}^{n}\right),\|\cdot\|_{2}\right)$ in a (bi)Lipschitz way. Defining $\theta, \pi, \psi: \mathbb{C}^{n \times r} \rightarrow S^{r, 0}\left(\mathbb{C}^{n}\right)$

$$
\theta(x)=\left(x x^{*}\right)^{\frac{1}{2}} \quad \pi(x)=x x^{*} \quad \psi(x)=\|x\|_{2}\left(x x^{*}\right)^{\frac{1}{2}}
$$

We note that the above are surjective and injective modulo \sim.

Theorem

(1) $\theta:\left(\mathbb{C}^{n \times r} / U(r), D\right) \rightarrow\left(S^{r, 0}\left(\mathbb{C}^{n}\right),\|\cdot\|_{2}\right)$ is a bi-Lipschitz map:

$$
\frac{1}{\sqrt{2}}\|\theta(x)-\theta(y)\|_{2} \leq D(x, y) \leq\|\theta(x)-\theta(y)\|_{2} \quad \forall x, y \in \mathbb{C}^{n \times r} / U(r)
$$

(1) $\pi, \psi:\left(\mathbb{C}^{n \times r} / U(r), d\right) \rightarrow\left(S^{r, 0}\left(\mathbb{C}^{n}\right),\|\cdot\|_{1}\right)$ are upper and lower Lipschitz:

$$
\|\pi(x)-\pi(y)\|_{1} \leq d(x, y) \leq 2\|\psi(x)-\psi(y)\|_{2} \quad \forall x, y \in \mathbb{C}^{n \times r} / U(r)
$$

(1) For $r=1$ we have $d(x, y)=\|\pi(x)-\pi(y)\|_{1}$
(0) For $r>1$, there is no constant C satisfying $d(x, y) \leq C\|\pi(x)-\pi(y)\|_{2}$ for all $x, y \in \mathbb{C}^{n \times r} / U(r)$ (hence the use of the alternate embedding ψ).

Lipschitz Constants

With these embeddings in mind we define

$$
\begin{aligned}
& a_{0}=\inf _{\substack{x, y \in \mathbb{C}^{n \times r} \\
[x] \neq[y]}} \frac{\|\beta(x)-\beta(y)\|_{2}^{2}}{\|\pi(x)-\pi(y)\|_{2}^{2}}=\inf _{\substack{x, y \in \mathbb{C}^{n \times r} \\
[x] \neq[y]}} \frac{\sum_{j=1}^{m}\left(\left\langle x x^{*}, A_{j}\right\rangle_{\mathbb{R}}-\left\langle y y^{*}, A_{j}\right\rangle_{\mathbb{R}}\right)^{2}}{\left\|x x^{*}-y y^{*}\right\|_{2}^{2}} \\
& A_{0}=\inf _{\substack{x, y \in \mathbb{C}^{n \times r} \\
[x] \neq[y]}} \frac{\|\alpha(x)-\alpha(y)\|_{2}^{2}}{\|\theta(x)-\theta(y)\|_{2}^{2}}=\inf _{\substack{\left.x, y \in \mathbb{C}^{n \times r} \\
[x] \neq \mid y\right]}} \frac{\sum_{j=1}^{m}\left(\left\langle x x^{*}, A_{j}\right\rangle_{\mathbb{R}}^{\frac{1}{2}}-\left\langle y y^{*}, A_{j}\right\rangle_{\mathbb{R}}^{\frac{1}{2}}\right)^{2}}{\left\|\left(x x^{*}\right)^{\frac{1}{2}}-\left(y y^{*}\right)^{\frac{1}{2}}\right\|_{2}^{2}}
\end{aligned}
$$

We will show that in fact $a_{0}>0$ and provide a means of computing it for any $r \geq 1$. We also show, however, that $A_{0}=0$ for $r>1$! Thus the α map is not Lipschitz invertible for $r>1$.

Geometry of $S^{r, 0}\left(\mathbb{C}^{n}\right)$

To compute a_{0} and A_{0} we essentially need to linearize π. If $S^{r, 0}\left(\mathbb{C}^{n}\right)$ were a manifold that would be the end of the story, but it is only a semi-algebraic variety, so we need to understand the singular structure of $S^{r, 0}\left(\mathbb{C}^{n}\right)$ and whether the linearized problem suffices when "boundary manifolds" are encountered. We show that $S^{r, 0}\left(\mathbb{C}^{n}\right)$ has a Whitney stratification over the smooth Riemannian manifolds $S^{i}, 0\left(\mathbb{C}^{n}\right)($ PSD matrices of rank exactly $i)$ for $i=0, \ldots, r$ having real dimension $2 n i-i^{2}$.

Definition

[6] Let V_{i}, V_{j} be disjoint real manifolds embedded in \mathbb{R}^{d} such that $\operatorname{dim} V_{j}>\operatorname{dim} V_{i}$ and $V_{i} \cap \overline{V_{j}}$ non-empty. Let $x \in V_{i} \cap \overline{V_{j}}$. Then a triple $\left(V_{j}, V_{i}, x\right)$ is called $a-$ (resp. $b-$) regular if
(c) If a sequence $\left(y_{n}\right)_{n \geq 1} \subset V_{j}$ converges to x in \mathbb{R}^{d} and $T_{y_{n}}\left(V_{j}\right)$ converges in the Grassmannian $\mathrm{Gr}_{\mathrm{dim}} v_{j}\left(\mathbb{R}^{d}\right)$ to a subspace τ_{x} of \mathbb{R}^{d} then $T_{x}\left(V_{i}\right) \subset \tau_{x}$.
(0) If sequences $\left(y_{n}\right)_{n \geq 1} \subset V_{j}$ and $\left(x_{n}\right)_{n \geq 1} \subset V_{i}$ converge to x in \mathbb{R}^{d}, the unit vector $\left(x_{n}-y_{n}\right) /\left\|x_{n}-y_{n}\right\|_{2}$ converges to a vector $v \in \mathbb{R}^{d}$, and $T_{y_{n}}\left(V_{j}\right)$ converges in the Grassmannian $\operatorname{Gr}_{\text {dim }} v_{j}\left(\mathbb{R}^{d}\right)$ to a subspace τ_{x} of \mathbb{R}^{d} then $v \in \tau_{x}$.

Geometry of $S^{r, 0}\left(\mathbb{C}^{n}\right)$

Definition

Let V be a real semi-algebraic variety. A disjoint decomposition

$$
V=\bigsqcup_{i \in I} V_{i}, \quad V_{i} \cap V_{j}=\emptyset \text { for } i \neq j
$$

into smooth manifolds $\left\{V_{i}\right\}_{i \in 1}$, termed strata, is a Whitney stratification if
(0) Each point has a neighborhood intersecting only finitely many strata
(1) The boundary sets $\overline{V_{j}} \backslash V_{j}$ of each stratum V_{j} are unions of other strata.
(0) Every triple $\left(V_{j}, V_{i}, x\right)$ such that $x \in V_{i} \subset \overline{V_{j}}$ is a-regular and b-regular.

The point is that there is a compatibility between the stratifying manifolds - if you are in the tangent space of lower dimensional strata you are in a limiting sense also in the tangent space of higher strata. This gives the semi-algebraic variety more structure, and as we'll see in this case enables us to find what almost looks like a Riemannian geometry on the whole of $S^{r, 0}\left(\mathbb{C}^{n}\right)$ (even though it isn't a manifold).

Geometry of $S^{r, 0}\left(\mathbb{C}^{n}\right)$

We will stratify $S^{r, 0}\left(\mathbb{C}^{n}\right)$ as $\sqcup_{i=0}^{r} S^{i} i, 0\left(\mathbb{C}^{n}\right)$, where $\Sigma^{i}, 0\left(\mathbb{C}^{n}\right)$ is the set of positive semi-definite matrices of rank exactly i.

Theorem

Let D be the Bures-Wasserstein distance. Then
(1) $S^{p, q}\left(\mathbb{C}^{n}\right)$ is a real analytic manifold with $\operatorname{dim}_{\mathbb{R}}\left(S^{\rho, q}\left(\mathbb{C}^{n}\right)\right)=2 n(p+q)-(p+q)^{2}$.
(1) $\pi: \mathbb{C}_{*}^{n \times r} \rightarrow$ S' $^{r, 0}\left(\mathbb{C}^{n}\right)$ can be made into a Riemannian submersion by choosing the following unique Riemannian metric on $\dot{S}^{r, 0}\left(\mathbb{C}^{n}\right)$:

$$
h_{X}^{r}\left(Z_{1}, Z_{2}\right)=\operatorname{tr}\left\{Z_{2}^{\|} \int_{0}^{\infty} e^{-u x} Z_{1}^{\|} e^{-u X} d u\right\}+\Re \operatorname{tr}\left\{Z_{1}^{\perp *} Z_{2}^{\perp} X^{\dagger}\right\}
$$

Where $Z_{1}, Z_{2} \in T_{X}\left(S^{r, 0}\left(\mathbb{C}^{n}\right)\right), Z_{i}^{\|}=\mathbb{P}_{\operatorname{Ran}(X)} Z_{i} \mathbb{P}_{\operatorname{Ran}(X)}$ and $Z_{i}^{\perp}=\mathbb{P}_{\operatorname{Ran}(X)^{\perp}} Z_{i} \mathbb{P}_{\operatorname{Ran}(X)}$
(1) $\left(\dot{S}^{r, 0}\left(\mathbb{C}^{n}\right), h^{r}\right)$ is a Riemannian manifold with D as its geodesic distance.
(0) $S^{r, 0}\left(\mathbb{C}^{n}\right)$ admits as a Whitney stratification $\left(\mathcal{S}^{i, 0}\right)_{i=0}^{r}$.

Geometry of $S^{r, 0}\left(\mathbb{C}^{n}\right)$

We will stratify $S^{r, 0}\left(\mathbb{C}^{n}\right)$ as $\sqcup_{i=0}^{r} S^{i} i, 0\left(\mathbb{C}^{n}\right)$, where $\Sigma^{i}, 0\left(\mathbb{C}^{n}\right)$ is the set of positive semi-definite matrices of rank exactly i.

Theorem

The geometry associated to h is compatible with the Whitney stratification in the following sense: If $\left(A_{i}\right)_{i \geq 1},\left(B_{i}\right)_{i \geq 1} \subset \overleftarrow{S}^{p, 0}$ have limits A and B respectively in $S^{q, 0}$ for $q<p$ and if $\gamma_{i}:[0,1] \rightarrow \dot{S}^{p, 0}$ are geodesics in $\underline{S}^{p, 0}$ connecting A_{i} to B_{i} chosen in such a way that the limiting curve $\delta:[0,1] \rightarrow \overline{\bar{S}^{p, 0}}$ given by

$$
\delta(t)=\lim _{i \rightarrow \infty} \gamma_{i}(t)
$$

exists, then the image of δ lies in $\overleftarrow{S}^{q, 0}$ and is a geodesic curve in $\overleftarrow{S}^{q, 0}$ connecting A to B.
Another way to look at this is if $0 \leq q \leq p \leq r$ and $X=x x^{*} \in \overleftarrow{S}^{p, 0}$, $Y=y y^{*} \in \dot{S}^{q, 0}$ and $\gamma X_{1}, X_{2}:[0,1] \rightarrow \dot{S}^{p, 0}$ is the geodesic connecting X_{1} to X_{2} then

$$
D(x, y)^{2}=\min _{U \in U(r)}\|x-y U\|_{2}^{2}=\lim _{\substack{Z \in \mathcal{S}^{p},(}} \int_{\left.\mathbb{C}^{n}\right)}^{1} \int_{0}^{p} h_{\gamma x, Z}(t)\left(\gamma_{X, Z}^{\prime}(t), \gamma_{X, Z}^{\prime}(t)\right) d t
$$

Geometry of $S^{r, 0}\left(\mathbb{C}^{n}\right)$ via $\mathbb{C}^{n \times r}$

We may view $S^{r, 0}\left(\mathbb{C}^{n}\right)$ as the image under π of $\mathbb{C}^{n \times r}$, and each stratifying manifold $\dot{S}^{i}, 0\left(\mathbb{C}^{n}\right)$ as the image of $\mathbb{C}_{*}^{n \times i}$ (the $*$ means full rank). This parametrization is surjective, but not injective owing to the ambiguity $U(r)$. We can compute the differential $D \pi(z)(w)=z w^{*}+w z^{*}$, its kernel (the vertical space), and the orthogonal complement of its kernel (the horizontal space) which maps one to one onto the tangent space of $\Sigma^{i, 0}\left(\mathbb{C}^{n}\right)$.

Geometry of $S^{r, 0}\left(\mathbb{C}^{n}\right)$ via $\mathbb{C}^{n \times r}$

The spaces $V_{\pi, x}\left(\mathbb{C}_{*}^{n \times r}\right), H_{\pi, x}\left(\mathbb{C}_{*}^{n \times r}\right)$ and $T_{\pi(x)}\left({ }^{\circ} r, 0\left(\mathbb{C}^{n}\right)\right)$ may be computed as

Theorem

Let $\pi: \mathbb{C}_{*}^{n \times r} \rightarrow \dot{S}^{r, 0}\left(\mathbb{C}^{n}\right)$ be as before and let $V_{\pi, x}\left(\mathbb{C}_{*}^{n \times r}\right)$ and $H_{\pi, x}\left(\mathbb{C}_{*}^{n \times r}\right)$ denote the vertical and horizontal spaces of the manifold $\mathbb{C}_{*}^{n \times r}$ at x with respect to the embedding π. Let $T_{\pi(x)}\left(S^{r, 0}\left(\mathbb{C}^{n}\right)\right)$ denote the tangent space of $\dot{S}^{r, 0}\left(\mathbb{C}^{n}\right)$ at $\pi(x)$. Then

$$
\begin{array}{ll}
V_{\pi, x}\left(\mathbb{C}_{*}^{n \times r}\right) & =\left\{x K \mid K \in \mathbb{C}^{r \times r}, K^{*}=-K\right\} \\
H_{\pi, x}\left(\mathbb{C}_{*}^{n \times r}\right) & =\left\{H x+X \mid H \in \mathbb{C}^{n \times n}, H^{*}=H=\mathbb{P}_{\operatorname{Ran}(x)} H,\right. \\
& \left.X \in \mathbb{C}^{n \times r}, \mathbb{P}_{\operatorname{Ran}(x)} X=0\right\} \\
T_{\pi(x)}\left(S^{r, 0}\left(\mathbb{C}^{n}\right)\right) & =\left\{W \in \operatorname{Sym}\left(\mathbb{C}^{n}\right) \mid \mathbb{P}_{\operatorname{Ran}(x)^{\perp}} W_{\left.\mathbb{P}_{\operatorname{Ran}(x)^{\perp}}=0\right\}}\right. \\
& =D \pi(x)\left(H_{\pi, x}\left(\mathbb{C}_{*}^{n \times r}\right)\right)
\end{array}
$$

Note that $\operatorname{dim}_{\mathbb{R}}\left(V_{\pi, x}\left(\mathbb{C}_{*}^{n \times r}\right)\right)=r^{2}$ and $\operatorname{dim}_{\mathbb{R}}\left(T_{\pi(x)}\left(S^{r, 0}\left(\mathbb{C}^{n}\right)\right)\right)=\operatorname{dim}_{\mathbb{R}}\left(H_{\pi, x}\left(\mathbb{C}_{*}^{n \times r}\right)\right)=2 n r-r^{2}$.

The tangent space Lipschitz bounds

In our effort to obtain or at least control the global Lipschitz constant a_{0} we define the following local lower Lipschitz constants:

$$
\begin{aligned}
& a_{1}(z)=\lim _{R \rightarrow 0} \inf _{\substack{x \in \mathbb{C}^{x \times r} \\
\|\pi(x)-\pi(z)\|_{2}<R}} \frac{\|\beta(x)-\beta(z)\|_{2}^{2}}{\|\pi(x)-\pi(z)\|_{2}^{2}} \\
& a_{2}(z)=\lim _{R \rightarrow 0} \inf _{\substack{x, y \in \mathbb{C}^{n \times r} \\
\|\pi(x)-\pi(z)\|_{2}<R \\
\|\pi(y)-\pi(z)\|_{2}<R}} \frac{\left(\|\beta(x)-\beta(y)\|_{2}^{2}\right.}{\|\pi(x)-\pi(y)\|_{2}^{2}}
\end{aligned}
$$

As well as the following geometric constant

$$
a(z):=\min _{\substack{W \in T_{\pi(\mathcal{z})}\left(S^{k}, 0 \\\|W\| \|_{2}=1\right.}} \sum_{\left.\left.\mathbb{C}^{n}\right)\right)} \sum_{j=1}^{m}\left|\left\langle W, A_{j}\right\rangle_{\mathbb{R}}\right|^{2}
$$

Where here $\hat{z} \in \mathbb{C}_{*}^{n \times k}$ is such that $z=[\hat{z} \mid 0] U$ for some $U \in U(r)(\hat{z}=z$ if z has rank r, and moreover the tangent space doesn't depend on the choice of \hat{z}).

The tangent space Lipschitz bounds

Given $z \in \mathbb{C}^{n \times r}$ having rank $k>0$ define $Q_{z} \in \mathbb{R}^{\left(2 n k-k^{2}\right) \times\left(2 n k-k^{2}\right)}$ as follows. Let $U_{1} \in \mathbb{C}^{n \times k}$ be a matrix whose columns are left singular vectors of z corresponding to non-zero singular values of z, so that $U_{1} U_{1}^{*}=\mathbb{P}_{\operatorname{Ran}(z)}$. Let $U_{2} \in \mathbb{C}^{n \times(n-k)}$ be a matrix whose columns are left singular vectors of z corresponding to the zero singular values of z, so that $U_{2} U_{2}^{*}=\mathbb{P}_{\mathrm{Ran}_{z^{\perp}}}$. Then

$$
Q_{z}:=Q_{\left[U_{1} \mid U_{2}\right]}=\sum_{j=1}^{m}\left[\begin{array}{l}
\tau\left(U_{1}^{*} A_{j} U_{1}\right) \\
\mu\left(U_{2}^{*} A_{j} U_{1}\right)
\end{array}\right]\left[\begin{array}{l}
\tau\left(U_{1}^{*} A_{j} U_{1}\right) \\
\mu\left(U_{2}^{*} A_{j} U_{1}\right)
\end{array}\right]^{T}
$$

where the isometric isomorphisms τ and μ are given by

$$
\begin{array}{ll}
\tau: \operatorname{Sym}\left(\mathbb{C}^{k}\right) \rightarrow \mathbb{R}^{k^{2}} & \mu: \mathbb{C}^{p \times q} \rightarrow \mathbb{R}^{2 p q} \\
\tau(X)=\left[\begin{array}{c}
D(X) \\
\sqrt{2} T(\Re X) \\
\sqrt{2} T(\Im X)
\end{array}\right] & \mu(X)=\operatorname{vec}\left(\left[\begin{array}{c}
\Re X \\
\Im X
\end{array}\right]\right)
\end{array}
$$

where if $A \in \operatorname{Sym}\left(\mathbb{R}^{n}\right) D(A)$ is the vectorization of its diagonal and and $T(A)$ is the vectorization of its upper triangular part.

The tangent space Lipschitz bounds

Theorem

- $\left(A_{j}\right)_{j=1}^{m}$ is $U(r)$ phase retrievable if and only if $a_{0}>0$.
- The global lower bound a_{0} is given as $a_{0}=\inf _{z \in \mathbb{C}^{n \times r} \backslash\{0\}} a(z)$.
- The local lower bounds $a_{1}(z)$ and $a_{2}(z)$ are squeezed between $a_{0} \leq a_{2}(z) \leq a_{1}(z) \leq a(z)$ so that in particular $a_{0}=\inf _{z \in \mathbb{C}^{n \times r} \backslash\{0\}} a_{i}(z)$.
- The infimization problem in a(z) may be reformulated as an eigenvalue problem. Let Q_{z} be as above. Then

$$
a(z)=\lambda_{2 n k-k^{2}}\left(Q_{z}\right)
$$

Corollary

Fix any $U_{2} \in \mathbb{C}^{n \times n-r}$ with orthonormal columns. We may compute a_{0} as

$$
a_{0}=\min _{\substack{U_{1} \in \mathbb{C}^{n \times r} \\ U=\left[U_{1} \mid U_{2}\right] \in U(n)}} \lambda_{2 n r-r^{2}}\left(Q_{\left[U_{1} \mid U_{2}\right]}\right)
$$

The horizontal space Lipschitz bounds

An alternate method of controlling a_{0} is to use the natural distance d. We define for $z \in \mathbb{C}^{n \times r}$ with rank k the local lower Lipschitz constants

$$
\begin{gathered}
\hat{a}_{1}(z)=\lim _{R \rightarrow 0} \inf _{\substack{x \in \mathbb{C}^{n \times r} \\
d(x, z)<R \\
\operatorname{rank}(x) \leq k}} \frac{\|\beta(x)-\beta(z)\|_{2}^{2}}{d(x, z)^{2}} \\
\hat{a}_{2}(z)=\lim _{R \rightarrow 0} \inf _{\substack{x, y \in \mathbb{C}^{n \times r} \\
d(x, z)<R \\
d(y, z)<R \\
\operatorname{rank}(x) \leq k \\
\operatorname{rank}(y) \leq k}} \frac{\|\beta(x)-\beta(y)\|_{2}^{2}}{d(x, y)^{2}}
\end{gathered}
$$

Unfortunately the rank constraints are necessary here - without them the constants would be zero. We also define the geometric constant

$$
\hat{a}(z)=\min _{\substack{w \in H_{\pi, s}\left(\mathbb{C}_{*}^{n \times k}\right) \\\|w\|_{2}=1}} \sum_{j=1}^{m}\left|\left\langle D \pi(\hat{z})(w), A_{j}\right\rangle_{\mathbb{R}}\right|^{2}
$$

The horizontal space Lipschitz bounds

Given $z \in \mathbb{C}^{n \times r}$ having rank $k>0$ define $\hat{Q}_{z} \in \mathbb{R}^{2 n k \times 2 n k}$ as follows. Let $F_{j}=\mathbb{I}_{k \times k} \otimes j\left(A_{j}\right) \in \mathbb{R}^{2 n k \times 2 n k}$ where

$$
\begin{aligned}
& j: \mathbb{C}^{m \times n} \rightarrow \mathbb{R}^{2 m \times 2 n} \\
& j(X)=\left[\begin{array}{cc}
\Re X & -\Im X \\
\Im X & \Re X
\end{array}\right]
\end{aligned}
$$

is an injective homomorphism. Then

$$
\hat{Q}_{z}:=4 \sum_{j=1}^{m} F_{j} \mu(\hat{z}) \mu(\hat{z})^{T} F_{j}
$$

The horizontal space Lipschitz bounds

Theorem

- For $r=1 \hat{a}(z)$ differs from $a(z)$ by a constant factor hence $\inf _{z \in \mathbb{C}^{n \times r} \backslash\{0\}} \hat{a}(z)>0$. For $r>1$ this infimum is zero and there is no non-trivial global lower bound \hat{a}_{0} analogous to a_{0} for the natural metric d.
- The local lower bounds with respect to the alternate metric d satisfy

$$
\hat{a}_{1}(z)=\hat{a}_{2}(z)=\frac{1}{4\|z\|_{2}^{2}} \hat{a}(z)
$$

- The infimization problem in $\hat{a}(z)$ may be reformulated as an eigenvalue problem. Let \hat{Q}_{z} be as above. Then $\hat{a}(z)$ is directly computable as

$$
\hat{a}(z)=\lambda_{2 n k-k^{2}}\left(\hat{Q}_{z}\right)
$$

- We have the following local inequality relating $a(z)$ and $\hat{a}(z)$.

$$
\frac{1}{4\|z\|_{2}^{2}} \hat{a}(z) \leq a(z) \leq \frac{1}{2 \sigma_{k}(z)^{2}} \hat{a}(z)
$$

The horizontal space Lipschitz bounds

Theorem

(continued)

- While the fact that $\hat{a}_{0}=0$ makes clear that a_{0} cannot be upper bounded by $\inf _{z \in \mathbb{C}^{n \times r} \backslash\{0\}} \hat{a}(z)$, we can achieve a similar end by constraining z to have orthonormal columns. Namely

$$
\frac{1}{4} \inf _{\substack{z \in \mathbb{C}^{n \times r} \\ z^{*} z=\mathbb{I}_{r \times r}}} \hat{a}(z) \leq a_{0} \leq \frac{1}{2} \inf _{\substack{z \in \mathbb{C N}^{n \times r} \\ z^{*} z=\mathbb{I}_{r \times r}}} \hat{a}(z)
$$

Phase retrievability criteria

The last two theorems give criteria for a frame to be $U(r)$ phase retrievable.

Theorem

Let $\left\{A_{j}\right\}_{j=1}^{m}$ be a frame for $\mathbb{C}^{n \times r}$. Then the following are equivalent:
(1) $\left\{A_{j}\right\}_{j=1}^{m}$ is $U(r)$ phase retrievable.
(1) For all $U_{1} \in \mathbb{C}^{n \times r}, U_{2} \in \mathbb{C}^{n \times(n-r)}$ such that $\left[U_{1} \mid U_{2}\right] \in U(n)$ the matrix

$$
Q_{\left[U_{1} \mid U_{2}\right]}=\sum_{j=1}^{m}\left[\begin{array}{l}
\tau\left(U_{1}^{*} A_{j} U_{1}\right) \\
\mu\left(U_{2}^{*} A_{j} U_{1}\right)
\end{array}\right]\left[\begin{array}{l}
\tau\left(U_{1}^{*} A_{j} U_{1}\right) \\
\mu\left(U_{2}^{*} A_{j} U_{1}\right)
\end{array}\right]^{T}
$$

is invertible.
(1) For all $z \in \mathbb{C}^{n \times r}$ such that z has orthonormal columns, the matrix

$$
\hat{Q}_{z}=4 \sum_{j=1}^{m}\left(\mathbb{I}_{k \times k} \otimes j\left(A_{j}\right)\right) \mu(z) \mu(z)^{T}\left(\mathbb{I}_{k \times k} \otimes j\left(A_{j}\right)\right)
$$

has as its null space the r^{2} dimensional $\mathcal{V}_{z}=\left\{\mu(u) \mid u \in V_{\pi, z}\left(\mathbb{C}_{*}^{n \times r}\right)\right\}$.

Phase retrievability criteria

Theorem

(Continued)
(1) For all $U_{1} \in \mathbb{C}^{n \times r}, U_{2} \in \mathbb{C}^{n \times(n-r)}$ such that $\left[U_{1} \mid U_{2}\right] \in U(n), H \in \operatorname{Sym}\left(\mathbb{C}^{r}\right)$, $B \in \mathbb{C}^{(n-r) \times r}$ there exist $c_{1}, \ldots c_{m} \in \mathbb{R}$ such that

$$
\begin{align*}
& U_{1}^{*}\left(\sum_{j=1}^{m} c_{j} A_{j}\right) U_{1}=H \tag{1a}\\
& U_{2}^{*}\left(\sum_{j=1}^{m} c_{j} A_{j}\right) U_{1}=B \tag{1b}
\end{align*}
$$

(2) For all $U_{1} \in \mathbb{C}^{n \times r}$ with orthonormal columns

$$
\operatorname{span}_{\mathbb{R}}\left\{A_{j} U_{1}\right\}_{j=1}^{m}=\left\{U_{1} K \mid K \in \mathbb{C}^{r \times r}, K^{*}=-K\right\}^{\perp}
$$

The second criterion is a generalization of the result in [3] which says that a frame $\left(\phi_{j}\right)_{j=1}^{m}$ for \mathbb{C}^{n} is phase retrievable iff $\operatorname{span}_{\mathbb{R}}\left\{\phi_{j} \phi_{j}^{*} u \mid j=1, \ldots, m\right\}=\{\lambda i u \mid \lambda \in \mathbb{R}\}^{\perp}$ for all $u \in \mathbb{C}^{n}$.

Other results in the paper

- We give a purely topological proof that $\left(A_{j}\right)_{j=1}^{m}$ phase retrievable implies $a_{0}>0$ (we do this before computing a_{0}).
- We prove using continuity of eigenvalues with respect to matrix entries that $A_{0}=0$ for $r>1$.
- We compute local lower Lipschitz constants for α.
- We compute Lipschitz upper bounds b_{0} and B_{0}.
- We show that our results reduce to those in [2] for the case $r=1$.

Summary of differences between mixed and pure state case

$r=1$ (pure state case)	$r>1$ (mixed state case)				
Phase ambiguity is scalar $e^{i \theta}$	Phase ambiguity is in $U(r)$				
$\left(z_{i}\right)_{i \geq 1} \subset \mathbb{C}^{1} / U(1)$ with $\left\\|z_{i}\right\\|_{2}=1$	$\left(z_{i}\right)_{i \geq 1} \subset \mathbb{C}^{n \times r} / U(r)$ with $\left\\|z_{i}\right\\|_{2}=1$				
cannot approach zero	can come ϵ close to dropping rank				
$d(x, y)=\left\\|x x^{*}-y y^{*}\right\\|_{1}$	$\nexists C$ st. $d(x, y) \leq C\left\\|x x^{*}-y y^{*}\right\\|_{p}$				
β is bi- Lipschitz wrt. d	β is bi-Lipschitz wrt. $\left\\|x x^{*}-y y^{*}\right\\|_{2}$				
Only locally lower Lipschitz wrt. d					
$A_{0}>0, \alpha$ is bi-Lipschitz	$A_{0}=0, \alpha$ is locally lower Lipschitz				
wrt. D and $\left\\|\left(x x^{*}\right)^{\frac{1}{2}}-\left(y y^{*}\right)^{\frac{1}{2}}\right\\|_{2}$	wrt. D and $\left\\|\left(x x^{*}\right)^{\frac{1}{2}}-\left(y y^{*}\right)^{\frac{1}{2}}\right\\|_{2}$				

Thank you!

Thanks for listening! I would like to thank my advisor Professor Balan for giving me the opportunity to be here. This work was partially supported by the NSF under Grant DMS-1816608.

References

Radu Balan, Bernhard G Bodmann, Peter G Casazza, and Dan Edidin. Painless reconstruction from magnitudes of frame coefficients. Journal of Fourier Analysis and Applications, 15(4):488-501, 2009.

Radu Balan and Dongmian Zou.
On lipschitz analysis and lipschitz synthesis for the phase retrieval problem.
Linear Algebra and its Applications, 496:152-181, 2016.
Afonso S Bandeira, Jameson Cahill, Dustin G Mixon, and Aaron A Nelson.
Saving phase: Injectivity and stability for phase retrieval.
Applied and Computational Harmonic Analysis, 37(1):106-125, 2014.
國 John R Deller Jr, John G Proakis, and John H Hansen.
Discrete time processing of speech signals.
Prentice Hall PTR, 1993.
围 Zhukuan Hu, Cuimei Tan, Zhenzhen Song, and Zhengjun Liu.
A coherent diffraction imaging by using an iterative phase retrieval with multiple patterns at several directions.
Optical and Quantum Electronics, 52(1):1-10, 2020 .

俥 Vadim Kaloshin．
A geometric proof of the existence of whitney stratifications．
arXiv preprint math／0010144， 2000.
围 Michael Kech and Michael Wolf．
From quantum tomography to phase retrieval and back．
In 2015 International Conference on Sampling Theory and Applications
（SampTA），pages 173－177．IEEE， 2015.
目
Wooshik Kim and Monson H Hayes．
The phase retrieval problem in x－ray crystallography．
In［Proceedings］ICASSP 91： 1991 International Conference on Acoustics，Speech，and Signal Processing，pages 1765－1768．IEEE， 1991.

國 Michael V Klibanov，Paul E Sacks，and Alexander V Tikhonravov． The phase retrieval problem．
Inverse problems，11（1）：1， 1995.

