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The Complex Phase Retrieval Problem: Variants

Continuous Fourier: Recover f ∈ B ⊂ {f ∈ S ′(R)|f̂ ∈ L1
loc(R)} from |f̂ |.

Only possible if B is sufficiently restrictive - for example if f is taken to have
compact support or is supported in the half line.[9]

Discrete Fourier: Recover f = (f [0], . . . , f [n − 1]) ∈ Cn from the (typically
squared) magnitudes of its DFT coefficents y [k] = |

∑n
j=0 y [j ]e2πikj/n|2.

Separable Hilbert space: Take H a separable complex Hilbert space. Recover
z ∈ H from (|〈z , fk〉|)k∈I where (fk)k∈I ⊂ H is a frame for H.

Finite Hilbert space: Recover z ∈ H = Cn from (|〈z , fk〉|)mk=1 where (fk)mk=1 is
a frame for Cn.

Phase Retrieval with generalized frames: Recover z ∈ H = Cn from 〈z ,Ajz〉
where (Aj)

m
j=1 is a generalized frame of Hermitian matrices (termed

measurement matrices). Note that Aj = fj f
∗
j gives the finite Hilbert space

case.

In all such cases recovery is only ever possible up to an overall phase - that is to
say modulo the action of U(1).
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Applications

Inverse Problem in Potential Scattering - Determine potential / surface
structure from (typically x-ray or neutron) scattering matrix.[9]

Thin film optics - Inferring dielectric permittivity ε(z) of medium from the
frequency dependence of the ratio R(k) of the strength of transmitted and
reflected tangential components.[9]

Coherent Diffraction Imaging - infer shape of object in imaging plane from
the diffraction pattern it produces under a coherent beam.[5]

X-ray crystallography - infer electron density function ρ(r) =
∑N

i=1 riδ(r − ri )
of a single crystal cell from the measured diffraction pattern. [8]

Speech recognition - the human ear is quite reliably “phase deaf,”
determining what has been said only from the magnitude spectrum of a
signal.[4]

Pure state quantum tomography - inferring the state of a quantum system
(represented by a vector in a Hilbert space) from potentially noisy
measurements.[1][7]
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Motivating Application: Mixed Quantum Tomography

A mixed state quantum system is modeled as a statistical ensemble over pure
quantum states living in a Hilbert space H. The standard example is unpolarized
light. In such cases, all of the measurable information in the system is contained
in a density matrix:

ρ =
∑
j∈I

pjψjψ
∗
j

pj - ensemble probability of being in pure state ψj :
∑

i∈I pj = 1.

ψj ∈ H - a pure state: Given an observable (Hermitian matrix) A with
eigenpair (v , λ) we have Prψj [A takes value λ] = |〈v , ψj〉|2.

If we take H = Cn and |I| = r then ρ is a positive semi-definite matrix of rank at
most r and having unit trace, we write ρ ∈ S r ,0(Cn) ∩ {x ∈ Sym(Cn)|tr{x} = 1}.
The goal of quantum tomography is to infer ρ from measurements of a collection
of observables (Aj)

m
j=1.
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Motivating Application: Mixed Quantum Tomography

The expectation of an observable Aj in mixed state ρ is

Eρ[Aj ] =
r∑

k=1

pk〈ψk ,Ajψk〉 =
r∑

k=1

pktr{ψkψ
∗
kAj} = tr{ρAj} = 〈ρ,Aj〉

By repeatedly measuring our observables and allowing the system to “relax” we
may obtain these expectations to within a small error. Since ρ ∈ S r ,0(Cn) we may
write via Cholesky factorization for some z ∈ Cn×r

ρ = zz∗

Note ρ is unchanged by z 7→ zU for U ∈ U(r), so the problem becomes to stably
recover z modulo U(r) (a “unitary phase”) from (〈zz∗,Aj〉)mj=1. In particular we
would like the following map to be injective (and indeed lower Lipschitz):

β : Cn×r/U(r)→ Rm

β(z) = (〈zz∗,Aj〉)mj=1

A generalized frame (Aj)
m
j=1 for which β is injective is called U(r) phase

retrievable.
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U(r) phase retrievability

A generalized frame (Aj)
m
j=1 for which β is injective is called U(r) phase

retrievable.

As for U(1), U(r) phase retrievability is a stronger condition than being a
generalized frame for Cn×r .

If A is a frame for Sym(Cn) itself then it is automatically U(r) phase
retrievable.

if A is U(r) phase retrievable then it is U(k) phase retrievable for any
1 ≤ k ≤ r , in particular it is phase retrievable.

Thus the concept of being U(r) phase retrievable is an intermediate between being
phase retrievable for Cn and being a frame for Sym(Cn). Another way to think
about U(r) phase retrieval is as low rank positive semi-definite matrix recovery.
In analogy with the pure state case in which one is also interested in the stable
recovery properties of the non-linear measurement map αj(x) = |〈x , fj〉| we define

α : Cn×r/U(r)→ Rm

α(z) = (〈zz∗,Aj〉
1
2 )mj=1
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The problem

The problem is then to

Identify appropriate distances on Cn×r/U(r) to use for stability analysis of α
and β.

Find out whether β (α) is lower Lipschitz on its range whenever (Aj)j=1 is
U(r) phase retrievable.

If so, provide a means of computing the lower Lipschitz constant for β (α).

Give if and only if criteria for a given frame of observables to be phase
retrievable.
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Lower Lipschitz with respect to what?

We define the equivalence relation ∼ on Cn×r via

x ∼ y ⇐⇒ ∃U ∈ U(r)|x = yU

and denote by [x ] the equivalence class of x ∈ Cn×r , and by Cn×r/U(r) the
collection of equivalence classes {[x ]|x ∈ Cn×r}. We define
D, d : Cn×r × Cn×r → R:

D(x , y) = min
U∈U(r)

||x − yU||2 =
√
||x ||22 + ||y ||22 − 2||x∗y ||1

d(x , y) = min
U∈U(r)

||x − yU||2||x + yU||2 =
√

(||x ||22 + ||y ||22)2 − 4||x∗y ||21

D is known as the Bures-Wasserstein distance. Note for λ ∈ C
D(λx , λy) = |λ|D(x , y), so D is appropriate for analyzing the α map.

d scales like d(λx , λy) = |λ|2d(x , y) and is appropriate for analyzing β.

d and D are not Lipschitz equivalent (they scale differently) but they do
generate the same topology on Cn×r/U(r).
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Lipschitz with respect to what?

Both d(x , y) and D(x , y) are positive and symmetry follows from the fact that
that U(r) is a group. Owing to the compactness of U(r), both D(x , y) and
d(x , y) are zero if and only if there exists U0 such that x = yU0, that is if and
only if [x ] = [y ]. Let U1,U2 ∈ U(r) be the minimizers for D(x , z) and D(z , y)
respectively. Then

D(x , z) + D(y , z) = ||x − zU1||2 + ||z − yU2||2
= ||x − zU1||2 + ||zU1 − yU2U1||2
≥ ||x − yU2U1||2 ≥ D(x , y)

The proof for d is identical except for the fact that it employs the triangle
inequality not for ||x − y ||2 but for ||x − y ||2||x + y ||2. That the latter satisfies the
triangle inequality reduces to a fact about the analytic geometry of parallelipipeds
in R3, namely that the sum of the products of face diagonals on any two sides
sharing a vertex exceeds the product of the third side sharing the vertex. We show
that for x , y ∈ Rn ||x − y ||2||x + y ||2 = ||xxT − yyT ||1.
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Lipschitz Embeddings

We would like to embed the metric spaces (Cn×r/U(r),D) and (Cn×r/U(r), d)
into (Sym(Cn), || · ||2) in a (bi)Lipschitz way. Defining θ, π, ψ : Cn×r → S r ,0(Cn)

θ(x) = (xx∗)
1
2 π(x) = xx∗ ψ(x) = ||x ||2(xx∗)

1
2

We note that the above are surjective and injective modulo ∼.

Theorem
(i) θ : (Cn×r/U(r),D)→ (S r ,0(Cn), || · ||2) is a bi-Lipschitz map:

1√
2
||θ(x)− θ(y)||2 ≤ D(x , y) ≤ ||θ(x)− θ(y)||2 ∀x , y ∈ Cn×r/U(r)

(ii) π, ψ : (Cn×r/U(r), d)→ (S r ,0(Cn), || · ||1) are upper and lower Lipschitz:

||π(x)− π(y)||1 ≤ d(x , y) ≤ 2||ψ(x)− ψ(y)||2 ∀x , y ∈ Cn×r/U(r)

(iii) For r = 1 we have d(x , y) = ||π(x)− π(y)||1
(iv) For r > 1, there is no constant C satisfying d(x , y) ≤ C ||π(x)− π(y)||2 for

all x , y ∈ Cn×r/U(r) (hence the use of the alternate embedding ψ).
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Lipschitz Constants

With these embeddings in mind we define

a0 = inf
x,y∈Cn×r

[x] 6=[y ]

||β(x)− β(y)||22
||π(x)− π(y)||22

= inf
x,y∈Cn×r

[x] 6=[y ]

∑m
j=1(〈xx∗,Aj〉R − 〈yy∗,Aj〉R)2

||xx∗ − yy∗||22

A0 = inf
x,y∈Cn×r

[x] 6=[y ]

||α(x)− α(y)||22
||θ(x)− θ(y)||22

= inf
x,y∈Cn×r

[x] 6=[y ]

∑m
j=1(〈xx∗,Aj〉

1
2

R − 〈yy∗,Aj〉
1
2

R)2

||(xx∗) 1
2 − (yy∗)

1
2 ||22

We will show that in fact a0 > 0 and provide a means of computing it for any
r ≥ 1. We also show, however, that A0 = 0 for r > 1! Thus the α map is not
Lipschitz invertible for r > 1.
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Geometry of S r ,0(Cn)

To compute a0 and A0 we essentially need to linearize π. If S r ,0(Cn) were a
manifold that would be the end of the story, but it is only a semi-algebraic variety,
so we need to understand the singular structure of S r ,0(Cn) and whether the
linearized problem suffices when “boundary manifolds” are encountered. We show
that S r ,0(Cn) has a Whitney stratification over the smooth Riemannian manifolds
S̊ i,0(Cn) (PSD matrices of rank exactly i) for i = 0, . . . , r having real dimension
2ni − i2.

Definition

[6] Let Vi ,Vj be disjoint real manifolds embedded in Rd such that
dimVj > dimVi and Vi ∩ Vj non-empty. Let x ∈ Vi ∩ Vj . Then a triple (Vj ,Vi , x)
is called a− (resp. b−) regular if

(a) If a sequence (yn)n≥1 ⊂ Vj converges to x in Rd and Tyn(Vj) converges in
the Grassmannian Grdim Vj (Rd) to a subspace τx of Rd then Tx(Vi ) ⊂ τx .

(b) If sequences (yn)n≥1 ⊂ Vj and (xn)n≥1 ⊂ Vi converge to x in Rd , the unit
vector (xn − yn)/||xn − yn||2 converges to a vector v ∈ Rd , and Tyn(Vj)
converges in the Grassmannian Grdim Vj (Rd) to a subspace τx of Rd then
v ∈ τx .
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Geometry of S r ,0(Cn)

Definition

Let V be a real semi-algebraic variety. A disjoint decomposition

V =
⊔
i∈I

Vi , Vi ∩ Vj = ∅ for i 6= j

into smooth manifolds {Vi}i∈I , termed strata, is a Whitney stratification if

(a) Each point has a neighborhood intersecting only finitely many strata

(b) The boundary sets Vj \ Vj of each stratum Vj are unions of other strata.

(c) Every triple (Vj ,Vi , x) such that x ∈ Vi ⊂ Vj is a-regular and b-regular.

The point is that there is a compatibility between the stratifying manifolds - if you
are in the tangent space of lower dimensional strata you are in a limiting sense also
in the tangent space of higher strata. This gives the semi-algebraic variety more
structure, and as we’ll see in this case enables us to find what almost looks like a
Riemannian geometry on the whole of S r ,0(Cn) (even though it isn’t a manifold).
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Geometry of S r ,0(Cn)

We will stratify S r ,0(Cn) as tri=0S̊
i,0(Cn), where S̊ i,0(Cn) is the set of positive

semi-definite matrices of rank exactly i .

Theorem

Let D be the Bures-Wasserstein distance. Then

(i) S̊p,q(Cn) is a real analytic manifold with
dimR(S̊p,q(Cn)) = 2n(p + q)− (p + q)2.

(ii) π : Cn×r
∗ → S̊ r ,0(Cn) can be made into a Riemannian submersion by choosing

the following unique Riemannian metric on S̊ r ,0(Cn):

hrX (Z1,Z2) = tr{Z‖2
∫ ∞

0

e−uXZ
‖
1 e
−uXdu}+ <tr{Z⊥∗1 Z⊥2 X †}

Where Z1,Z2 ∈ TX (S̊ r ,0(Cn)), Z
‖
i = PRan(X )ZiPRan(X ) and

Z⊥i = PRan(X )⊥ZiPRan(X )

(iii) (S̊ r ,0(Cn), hr ) is a Riemannian manifold with D as its geodesic distance.

(iv) S r ,0(Cn) admits as a Whitney stratification (S̊ i,0)ri=0.
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Geometry of S r ,0(Cn)

We will stratify S r ,0(Cn) as tri=0S̊
i,0(Cn), where S̊ i,0(Cn) is the set of positive

semi-definite matrices of rank exactly i .

Theorem
The geometry associated to h is compatible with the Whitney stratification in the
following sense: If (Ai )i≥1, (Bi )i≥1 ⊂ S̊p,0 have limits A and B respectively in S̊q,0

for q < p and if γi : [0, 1]→ S̊p,0 are geodesics in S̊p,0 connecting Ai to Bi chosen

in such a way that the limiting curve δ : [0, 1]→ S̊p,0 given by

δ(t) = lim
i→∞

γi (t)

exists, then the image of δ lies in S̊q,0 and is a geodesic curve in S̊q,0 connecting
A to B.

Another way to look at this is if 0 ≤ q ≤ p ≤ r and X = xx∗ ∈ S̊p,0,
Y = yy∗ ∈ S̊q,0 and γX1,X2 : [0, 1]→ S̊p,0 is the geodesic connecting X1 to X2 then

D(x , y)2 = min
U∈U(r)

||x − yU||22 = lim
Z→Y

Z∈S̊p,0(Cn)

∫ 1

0

hpγX,Z (t)(γ
′
X ,Z (t), γ′X ,Z (t))dt
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Geometry of S r ,0(Cn) via Cn×r

We may view S r ,0(Cn) as the image under π of Cn×r , and each stratifying
manifold S̊ i,0(Cn) as the image of Cn×i

∗ (the ∗ means full rank). This
parametrization is surjective, but not injective owing to the ambiguity U(r). We
can compute the differential Dπ(z)(w) = zw∗ + wz∗, its kernel (the vertical
space), and the orthogonal complement of its kernel (the horizontal space) which
maps one to one onto the tangent space of S̊ i,0(Cn).

Cn×r
∗

x

Tx (Cn×r
∗ ) = Cn×r

Hπ,x

Vπ,x

Z (det x∗x)

π(x)

S̊ r ,0 (Cn)

π

Tπ(x)

(
S̊ r ,0

)

0 = Dπ(x)(Vπ,x)

Dπ(x)

Dπ(x)†

[x ]

[x ]
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Geometry of S r ,0(Cn) via Cn×r

The spaces Vπ,x(Cn×r
∗ ), Hπ,x(Cn×r

∗ ) and Tπ(x)(S̊
r ,0(Cn)) may be computed as

Theorem

Let π : Cn×r
∗ → S̊ r ,0(Cn) be as before and let Vπ,x(Cn×r

∗ ) and Hπ,x(Cn×r
∗ ) denote

the vertical and horizontal spaces of the manifold Cn×r
∗ at x with respect to the

embedding π. Let Tπ(x)(S̊
r ,0(Cn)) denote the tangent space of S̊ r ,0(Cn) at π(x).

Then

Vπ,x(Cn×r
∗ ) = {xK |K ∈ Cr×r ,K∗ = −K}

Hπ,x(Cn×r
∗ ) = {Hx + X |H ∈ Cn×n,H∗ = H = PRan(x)H,

X ∈ Cn×r ,PRan(x)X = 0}

Tπ(x)(S̊
r ,0(Cn)) = {W ∈ Sym(Cn)|PRan(x)⊥WPRan(x)⊥ = 0}

= Dπ(x)(Hπ,x(Cn×r
∗ ))

Note that dimR(Vπ,x(Cn×r
∗ )) = r2 and

dimR(Tπ(x)(S̊
r ,0(Cn))) = dimR(Hπ,x(Cn×r

∗ )) = 2nr − r2.
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The tangent space Lipschitz bounds

In our effort to obtain or at least control the global Lipschitz constant a0 we
define the following local lower Lipschitz constants:

a1(z) = lim
R→0

inf
x∈Cn×r

||π(x)−π(z)||2<R

||β(x)− β(z)||22
||π(x)− π(z)||22

a2(z) = lim
R→0

inf
x,y∈Cn×r

||π(x)−π(z)||2<R
||π(y)−π(z)||2<R

(||β(x)− β(y)||22
||π(x)− π(y)||22

As well as the following geometric constant

a(z) := min
W∈Tπ(ẑ)(S̊k,0(Cn))

||W ||2=1

m∑
j=1

|〈W ,Aj〉R|2

Where here ẑ ∈ Cn×k
∗ is such that z = [ẑ |0]U for some U ∈ U(r) (ẑ = z if z has

rank r , and moreover the tangent space doesn’t depend on the choice of ẑ).
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The tangent space Lipschitz bounds

Given z ∈ Cn×r having rank k > 0 define Qz ∈ R(2nk−k2)×(2nk−k2) as follows. Let
U1 ∈ Cn×k be a matrix whose columns are left singular vectors of z corresponding
to non-zero singular values of z , so that U1U

∗
1 = PRan(z). Let U2 ∈ Cn×(n−k) be

a matrix whose columns are left singular vectors of z corresponding to the zero
singular values of z , so that U2U

∗
2 = PRanz⊥ . Then

Qz := Q[U1|U2] =
m∑
j=1

[
τ(U∗1AjU1)
µ(U∗2AjU1)

] [
τ(U∗1AjU1)
µ(U∗2AjU1)

]T
where the isometric isomorphisms τ and µ are given by

τ : Sym(Ck)→ Rk2

µ : Cp×q → R2pq

τ(X ) =

 D(X )√
2T (<X )√
2T (=X )

 µ(X ) = vec(

[
<X
=X

]
)

where if A ∈ Sym(Rn) D(A) is the vectorization of its diagonal and and T (A) is
the vectorization of its upper triangular part.
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The tangent space Lipschitz bounds

Theorem

(Aj)
m
j=1 is U(r) phase retrievable if and only if a0 > 0.

The global lower bound a0 is given as a0 = infz∈Cn×r\{0} a(z).

The local lower bounds a1(z) and a2(z) are squeezed between
a0 ≤ a2(z) ≤ a1(z) ≤ a(z) so that in particular a0 = infz∈Cn×r\{0} ai (z).

The infimization problem in a(z) may be reformulated as an eigenvalue
problem. Let Qz be as above. Then

a(z) = λ2nk−k2 (Qz)

Corollary

Fix any U2 ∈ Cn×n−r with orthonormal columns. We may compute a0 as

a0 = min
U1∈Cn×r

U=[U1|U2]∈U(n)

λ2nr−r2 (Q[U1|U2])
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The horizontal space Lipschitz bounds

An alternate method of controlling a0 is to use the natural distance d . We define
for z ∈ Cn×r with rank k the local lower Lipschitz constants

â1(z) = lim
R→0

inf
x∈Cn×r

d(x,z)<R

rank(x)≤k

||β(x)− β(z)||22
d(x , z)2

â2(z) = lim
R→0

inf
x,y∈Cn×r

d(x,z)<R
d(y ,z)<R

rank(x)≤k
rank(y)≤k

||β(x)− β(y)||22
d(x , y)2

Unfortunately the rank constraints are necessary here - without them the
constants would be zero. We also define the geometric constant

â(z) = min
w∈Hπ,ẑ (Cn×k

∗ )
||w ||2=1

m∑
j=1

|〈Dπ(ẑ)(w),Aj〉R|2
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The horizontal space Lipschitz bounds

Given z ∈ Cn×r having rank k > 0 define Q̂z ∈ R2nk×2nk as follows. Let
Fj = Ik×k ⊗ j(Aj) ∈ R2nk×2nk where

j : Cm×n → R2m×2n

j(X ) =

[
<X −=X
=X <X

]
is an injective homomorphism. Then

Q̂z := 4
m∑
j=1

Fjµ(ẑ)µ(ẑ)TFj
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The horizontal space Lipschitz bounds

Theorem

For r = 1 â(z) differs from a(z) by a constant factor hence
infz∈Cn×r\{0} â(z) > 0. For r > 1 this infimum is zero and there is no
non-trivial global lower bound â0 analogous to a0 for the natural metric d .

The local lower bounds with respect to the alternate metric d satisfy

â1(z) = â2(z) =
1

4||z ||22
â(z)

The infimization problem in â(z) may be reformulated as an eigenvalue
problem. Let Q̂z be as above. Then â(z) is directly computable as

â(z) = λ2nk−k2 (Q̂z)

We have the following local inequality relating a(z) and â(z).

1

4||z ||22
â(z) ≤ a(z) ≤ 1

2σk(z)2
â(z)
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The horizontal space Lipschitz bounds

Theorem

(continued)

While the fact that â0 = 0 makes clear that a0 cannot be upper bounded by
infz∈Cn×r\{0} â(z), we can achieve a similar end by constraining z to have
orthonormal columns. Namely

1

4
inf

z∈Cn×r
∗

z∗z=Ir×r

â(z) ≤ a0 ≤
1

2
inf

z∈Cn×r
∗

z∗z=Ir×r

â(z)
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Phase retrievability criteria

The last two theorems give criteria for a frame to be U(r) phase retrievable.

Theorem

Let {Aj}mj=1 be a frame for Cn×r . Then the following are equivalent:

(i) {Aj}mj=1 is U(r) phase retrievable.

(ii) For all U1 ∈ Cn×r , U2 ∈ Cn×(n−r) such that [U1|U2] ∈ U(n) the matrix

Q[U1|U2] =
m∑
j=1

[
τ(U∗1AjU1)
µ(U∗2AjU1)

] [
τ(U∗1AjU1)
µ(U∗2AjU1)

]T
is invertible.

(iii) For all z ∈ Cn×r such that z has orthonormal columns, the matrix

Q̂z = 4
m∑
j=1

(Ik×k ⊗ j(Aj))µ(z)µ(z)T (Ik×k ⊗ j(Aj))

has as its null space the r2 dimensional Vz = {µ(u)|u ∈ Vπ,z(Cn×r
∗ )}.
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Phase retrievability criteria

Theorem

(Continued)

1 For all U1 ∈ Cn×r , U2 ∈ Cn×(n−r) such that [U1|U2] ∈ U(n), H ∈ Sym(Cr ),
B ∈ C(n−r)×r there exist c1, . . . cm ∈ R such that

U∗1 (
m∑
j=1

cjAj)U1 = H (1a)

U∗2 (
m∑
j=1

cjAj)U1 = B (1b)

2 For all U1 ∈ Cn×r with orthonormal columns

spanR{AjU1}mj=1 = {U1K |K ∈ Cr×r ,K∗ = −K}⊥

The second criterion is a generalization of the result in [3] which says that a frame
(φj)

m
j=1 for Cn is phase retrievable iff spanR{φjφ∗j u|j = 1, . . . ,m} = {λiu|λ ∈ R}⊥

for all u ∈ Cn.
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Other results in the paper

We give a purely topological proof that (Aj)
m
j=1 phase retrievable implies

a0 > 0 (we do this before computing a0).

We prove using continuity of eigenvalues with respect to matrix entries that
A0 = 0 for r > 1.

We compute local lower Lipschitz constants for α.

We compute Lipschitz upper bounds b0 and B0.

We show that our results reduce to those in [2] for the case r = 1.
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Summary of differences between mixed and pure state case

r = 1 (pure state case) r > 1 (mixed state case)

Phase ambiguity is scalar e iθ Phase ambiguity is in U(r)

(zi )i≥1 ⊂ C1/U(1) with ||zi ||2 = 1

cannot approach zero

(zi )i≥1 ⊂ Cn×r/U(r) with ||zi ||2 = 1

can come ε close to dropping rank

d(x , y) = ||xx∗ − yy∗||1 @C st. d(x , y) ≤ C ||xx∗ − yy∗||p

β is bi- Lipschitz wrt. d
β is bi-Lipschitz wrt. ||xx∗ − yy∗||2
Only locally lower Lipschitz wrt. d

A0 > 0, α is bi-Lipschitz

wrt. D and ||(xx∗) 1
2 − (yy∗)

1
2 ||2

A0 = 0, α is locally lower Lipschitz

wrt. D and ||(xx∗) 1
2 − (yy∗)

1
2 ||2
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Thank you!

Thanks for listening! I would like to thank my advisor Professor Balan for giving
me the opportunity to be here. This work was partially supported by the NSF
under Grant DMS-1816608.
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